Raceway Cultivation of Spirulina platensis Using Underground Water

  • Kim, Choong-Jae (Environmental Biotechnology Research Center, KRIBB) ;
  • Jung, Yun-Ho (Environmental Biotechnology Research Center, KRIBB) ;
  • Ko, So-Ra (Environmental Biotechnology Research Center, KRIBB) ;
  • Kim, Hong-Ik (ProBionic, BioVenture Center, KRIBB) ;
  • Park, Yong-Ha (Department of Applied Microbiology, Yeungnam University) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, KRIBB)
  • Published : 2007.05.31

Abstract

The semi-outdoor cultivation of Spirulina platens is was attempted using an underground-water-based medium. Occurrence of contaminant organisms such as Chlorella sp. and Chlamydomonas sp. was not found from a microscopic observation and bacteria were not detected from denaturing gradient gel electrophoresis(DGGE) analysis of PCR-amplified 16S rDNA during the cultivation, owing to pH control and the high quality of the underground water. The mean productivity was high at $10.5g/m^2/d$ with a range of $4.2-12.3g/m^2/d$ despite the unfavorable weather conditions of the rainy season. The cultivated S. platens is included a normal protein content of 58.9%. Consequently, the underground water improved the biomass productivity and the biomass quality because of an abundant supplementation of natural minerals and through a contaminant-free culture.

Keywords

References

  1. Ahn, J.-H., M.-C. Kim, H.-C. Sin, M.-K. Choi, S.-S. Yoon, T.-S. Kim, H.-G. Song, G.-H. Lee, and J.-O. Ka. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569
  2. Belay, A. 1997. Mass culture of Spirulina: The Earthrise Farm experience, pp. 131-158. In A. Vonshak (ed.), Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd., London
  3. De Oliveira, M. A. C. L., M. P. C. Monteiro, P. G. Robbs, and S. G. F. Leite. 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquac. Int. 7: 261-275 https://doi.org/10.1023/A:1009233230706
  4. Fox, R. D. 1996. Spirulina. Production and Potential. Edisud, Aix-en-Provence, France
  5. Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753- 3755 https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  6. Jimenez, C., B. R. Cossio, and X. Niell. 2003. Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture 221: 331-345 https://doi.org/10.1016/S0044-8486(03)00123-6
  7. Kim, C.-J., Y.-H. Jung, G.-G. Choi, Y.-H. Park, C.-Y. Ahn, and H.-M. Oh. 2006 Optimization of outdoor cultivation of Spirulina platensis and control of contaminant organisms. Algae 21: 133-139 (in Korean) https://doi.org/10.4490/ALGAE.2006.21.1.133
  8. Kim, C.-J., S.-K. Yoon, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2006. Effect of Spirulina platensis and probiotics as feed additives on growth of shrimp Fenneropenaeus chinensis. J. Microbiol. Biotechnol. 16: 1248-1254
  9. Korea Food and Drug Administration. 2005. Code of Food Standards. Ministry of Human Health and Welfare of Korea, Kwachon, Korea
  10. Richmond, A. 1986. Outdoor mass cultures of microalgae, pp. 285-330. In A. Richmond (ed.), Handbook of Algal Mass Culture. CRC Press, Boca Raton, FL, U.S.A
  11. Shimamatsu, H. 2004. Mass production of Spirulina, an edible microalga. Hydrobiologia 512: 39-44 https://doi.org/10.1023/B:HYDR.0000020364.23796.04
  12. Strickland, J. D. H. and T. R. Parson. 1968. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa
  13. Tredici, M., T. Papuzzo, and L. Tomaselli. 1986. Outdoor mass culture of Spirulina maxima in sea-water. Appl. Microbiol. Biotechnol. 24: 47-50
  14. Vonshak, A., S. Boussiba, A. Abeliovich, and A. Richmond. 1983. Production of Spirulina biomass: Maintenance of monoalgal culture. Biotechnol. Bioeng. 25: 341-351 https://doi.org/10.1002/bit.260250204
  15. Wu, B., C. K. Tseng, and W. Xiang. 1993. Large-scale cultivation of Spirulina in sea-water based cultured medium. Bot. Mar. 36: 99-102 https://doi.org/10.1515/botm.1993.36.2.99
  16. Zarouk, C. 1966. Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. Et Gardner) Geitler. Ph D Thesis, University of Paris, France