Cloning, Sequencing, and Characterization of the Pradimicin Biosynthetic Gene Cluster of Actinomadura hibisca P157-2

  • Kim, Byung-Chul (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University) ;
  • Lee, Jung-Min (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University) ;
  • Ahn, Jong-Seog (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Beom-Seok (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University)
  • 발행 : 2007.05.31

초록

Pradimicins are potent antifungal antibiotics having an unusual dihydrobenzo[$\alpha$]naphthacenequinone aglycone substituted with D-alanine and sugars. Pradimicins are polyketide antibiotics produced by Actinomadura hibisca P157-2. The gene cluster involved in the biosynthesis of pradimicins was cloned and sequenced. The pradimicin gene cluster was localized to a 39-kb DNA segment and its involvement in the biosynthesis of pradimicin was proven by gene inactivation of prmA and prmB(ketosynthases $\alpha\;and\;\beta$). The pradimicin gene cluster consists of 28 open reading frames(ORFs), encoding a type II polyketide synthase(PKS), the enzymes involved in sugar biosynthesis and tailoring enzymes as well as two resistance proteins. The deduced proteins showed strong similarities to the previously validated gene clusters of angucyclic polyketides such as rubromycin, griseorhodin, and fredericamycin. From the pradimicin gene cluster, prmP3 encoding a component of the acetyl-CoA carboxylase complex was disrupted. The production levels of pradimicins of the resulting mutants decreased to 62% of the level produced by the wild-type strain, which indicate that the acetyl-CoA carboxylase gene would have a significant role in the production of pradimicins through supplying the extender unit precursor, malonyl-CoA.

키워드

참고문헌

  1. Bao, W., E. Wendt-Pienkowski, and C. R. Hutchinson. 1998. Reconstitution of the iterative type II polyketide synthase for tetracenomycin F2 biosynthesis. Biochemistry 37: 8132- 8138 https://doi.org/10.1021/bi980466i
  2. Chater, K. F. and M. J. Bibb. 1997. Regulation of bacterial antibiotic production. In Kleinkauf, H. and H. von Dohren (eds.). Biotechnology, vol. 7, Products of Secondary Metabolism. VCH, Weinheim
  3. Cheng, Y. Q., G. L. Tang, and B. Shen. 2002. Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. J. Bacteriol. 184: 7013-7024 https://doi.org/10.1128/JB.184.24.7013-7024.2002
  4. Dairi, T., Y. Hamano, T. Furumai, and T. Oki. 1999. Development of a self-cloning system for Actinomadura verrucosospora and identification of polyketide synthase genes essential for production of the angucyclic antibiotic pradimicin. Appl. Environ. Microbiol. 65: 2703-2709
  5. Dairi, T., Y. Hamano, Y. Igarashi, T. Furumai, and T. Oki. 1997. Cloning and nucleotide sequence of the putative polyketide synthase genes for pradimicin biosynthesis from Actinomadura hibisca. Biosci. Biotechnol. Biochem. 61: 1445-1453 https://doi.org/10.1271/bbb.61.1445
  6. Gust, B., G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546
  7. Han, L., K. Yang, K. Kulowski, E. Wendt-Pienkowski, C. R. Hutchinson, and L. C. Vining. 2000. An acyl-coenzyme A carboxylase encoding gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 146: 903-910 https://doi.org/10.1099/00221287-146-4-903
  8. Hill, A. M. 2006. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat. Prod. Rep. 23: 256-320
  9. Hong, J., C. Y. Choi, and Y. J. Yoon. 2003. Premature release of polyketide intermediates by hybrid polyketide synthase in Amycolatopsis mediterranei S699. J. Microbiol. Biotechnol. 13: 613-619
  10. Hopwood, D. A. 1997. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97: 2465-2497 https://doi.org/10.1021/cr960034i
  11. Jakobi, K. and C. Hertweck. 2004. A gene cluster encoding resistomycin biosynthesis in Streptomyces resistomycificus; exploring polyketide cyclization beyond linear and angucyclic patterns. J. Am. Chem. Soc. 126: 2298-2299 https://doi.org/10.1021/ja0390698
  12. Kakushima, M., Y. Sawada, M. Nishio, T. Tsuno, and T. Oki. 1989. Biosynthesis of pradimicin A. J. Org. Chem. 54: 2536-2539 https://doi.org/10.1021/jo00272a014
  13. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, United Kingdom
  14. Kim, D., Y. K. Park, J. S. Lee, J. F. Kim, H. Jeong, B. S. Kim, and C. H. Lee. 2006. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC2396. J. Microbiol. Biotechnol. 16: 1912- 1918
  15. Kulowski, K., E. Wendt-Pienkowski, L. Han, K. Yang, L. C. Vining, and C. R. Hutchinson. 1999. Functional characterization of the jadI gene as a cyclase forming angucyclinones. J. Am. Chem. Soc. 121: 1786-1794 https://doi.org/10.1021/ja982707f
  16. Lambalot, R. H., A. M. Gehring, R. S. Flugel, P. Zuber, M. LaCelle, M. A. Marahiel, R. Reid, C. Khosla, and C. T. Walsh. 1996. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol. 3: 923-936 https://doi.org/10.1016/S1074-5521(96)90181-7
  17. Lee, S., J. Park, S. Park, J. S. Ahn, C. Choi, and Y. J. Yoon. 2006. Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J. Microbiol. Biotechnol. 16: 974-978
  18. Li, A. and J. Piel. 2002. A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem. Biol. 9: 1017- 1026 https://doi.org/10.1016/S1074-5521(02)00223-5
  19. Lombo, F., A. F. Brana, J. A. Salas, and C. Mendez. 2004. Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem 5: 1181-1187 https://doi.org/10.1002/cbic.200400073
  20. Madduri, K., C. Waldron, and D. J. Merlo. 2001. Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J. Bacteriol. 183: 5632-5638 https://doi.org/10.1128/JB.183.19.5632-5638.2001
  21. Mao, Y., M. Varoglu, and D. H. Sherman. 1999. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem. Biol. 6: 251-263 https://doi.org/10.1016/S1074-5521(99)80040-4
  22. Metsa-Ketela, M., K. Ylihonko, and P. Mantsala. 2004. Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J. Antibiot. 57: 502-510 https://doi.org/10.7164/antibiotics.57.502
  23. Parajuli, N., D. B. Basnet, C. H. Lee, J. K. Sohng, and K. Liou. 2004. Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch. Biochem. Biophys. 425: 233-241 https://doi.org/10.1016/j.abb.2004.03.011
  24. Rohr, J. 2000. Bioorganic Chemistry, Deoxysugars, Polyketides and Related Classes: Synthesis, Biosynthesis, Enzymes. Springer, Germany
  25. Rohr, J. and K. Thiericke. 1992. Angucycline group antibiotics. Nat. Prod. Rep. 9: 103-137
  26. Saitoh, K., Y. Sawada, K. Tomita, T. Tsuno, M. Hatori, and T. Oki. 1993. Pradimicins L and FL: New pradimicin congeners from Actinomadura verrucosospora subsp. neohibisca. J. Antibiot. 46: 387-397 https://doi.org/10.7164/antibiotics.46.387
  27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  28. Samols, D., C. G. Thornton, V. L. Murtif, G. K. Kumar, F. C. Haase, and H. G. Wood. 1988. Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263: 6461-6464
  29. Shen, B., R. G. Summers, E. Wendt-Pienkowski, and C. R. Hutchinson. 1995. The Streptomyces glaucescens tcmKL polyketide synthase and tcmNM polyketide cyclase genes govern the size and shape of aromatic polyketides. J. Am. Chem. Soc. 117: 6811-6821 https://doi.org/10.1021/ja00131a002
  30. Sherman, D. H., F. Malpartida, M. J. Bibb, H. M. Kieser, M. J. Bibb, and D. A. Hopwood. 1989. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tu22. EMBO J. 8: 2717-2725
  31. Trefzer, A., S. Pelzer, J. Schimana, S. Stockert, C. Bihlmaier, H. P. Fiedler, K. Welzel, A. Vente, and A. Bechthold. 2002. Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob. Agents Chemother. 46: 1174-1182 https://doi.org/10.1128/AAC.46.5.1174-1182.2002
  32. Tsunakawa, M., M. Nishio, H. Ohkuma, T. Tsuno, M. Konishi, T. Naito, T. Oki, and H. Kawaguchi. 1989. The structure of pradimicins A, B, and C: A novel family of antifungal antibiotics. J. Org. Chem. 54: 2532-2536 https://doi.org/10.1021/jo00272a013
  33. Wang, L., J. McVey, and L. C. Vining. 2001. Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 147: 1535- 1545 https://doi.org/10.1099/00221287-147-6-1535
  34. Wendt-Pienkowski, E., Y. Huang, J. Zhang, B. Li, H. Jiang, H. Kwon, C. R. Hutchinson, and B. Shen. 2005. Cloning, sequencing, analysis, and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus. J. Am. Chem. Soc. 127: 16442-16452 https://doi.org/10.1021/ja054376u
  35. Westrich, L., S. Domann, B. Faust, D. Bedford, D. A. Hopwood, and A. Bechthold. 1999. Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 170: 381-387 https://doi.org/10.1111/j.1574-6968.1999.tb13398.x
  36. Xu, Z., K. Jakobi, K. Welzel, and C. Hertweck. 2005. Biosynthesis of the antitumor agent chartreusin involves the oxidative rearrangement of an anthracyclic polyketide. Chem. Biol. 12: 579-588 https://doi.org/10.1016/j.chembiol.2005.04.017