The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Cha, Chang-Jun (Department of Biotechnology and BET Institute, College of Industrial Science, Chung-Ang University) ;
  • Kim, Yeong-Suk (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Son, Dong-Won (Korea Forest Research Institute) ;
  • Kim, Young-Kyoon (Department of Forest Products, College of Forest Science, Kookmin University)
  • Published : 2007.05.31

Abstract

Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.

Keywords

References

  1. Berghem, L. E. and L. G. Pettersson. 1973. The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur. J. Biochem. 37: 21-30 https://doi.org/10.1111/j.1432-1033.1973.tb02952.x
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Chen, H.-G., X. Yan, X.-Y. Liu, M.-D. Wang, H.-M. Huang, X.-C. Jia, and J.-A. Wang. 2006. Purification and characterization of nevel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J. Microbiol. Biotechnol. 16: 1132-1138
  4. Cohen, R., M. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417 https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  5. Enari, T. M. and M. L. Niku-Paavula. 1987. Enzymatic hydrolysis of cellulose: Is the current theory of mechanism of hydrolysis valid? Crit. Rev. Biotechnol. 5: 67-87 https://doi.org/10.3109/07388558709044153
  6. Eriksson, K.-E., R. A. Blanchette, and P. Ander. 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Berlin Heidelberg, New York
  7. Flournoy, D. S., T. K. Kirk, and T. L. Highley. 1991. Wood decay by brown-rot fungi: Changes in pore structure and cell wall volume. Holzforschung 45: 383-388 https://doi.org/10.1515/hfsg.1991.45.5.383
  8. Gilad, R., L. Rabinovich, S. Yaron, E. A. Bayer, R. Lamed, H. J. Gilbert, and Y. Shoham. 2003. CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol. 185: 391-398 https://doi.org/10.1128/JB.185.2.391-398.2003
  9. Green III, F. and T. L. Highley. 1997. Mechanism of brownrot decay: Paradigm or paradox. Int. Biodeter. Biodegrad. 39: 113-124 https://doi.org/10.1016/S0964-8305(96)00063-7
  10. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788 https://doi.org/10.1042/bj2930781
  11. Highley, T. L. 1973. Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber 5: 50- 58
  12. Highley, T. L. 1980. Cellulose degradation by celluloseclearing and non cellulose-clearing brown-rot fungi. Appl. Environ. Microbiol. 40: 1145-1147
  13. Ishihara, M. and K. Shimizu. 1984. Purification and properties of two extracellular endo-cellulases from the brown rotting fungus Tyromyces palustris. Mokkuzai Gakkaishi 30: 79-87
  14. Jensen Jr., K. A., C. J. Houtman, Z. C. Ryan, and K. E. Hammel. 2001. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Envir. Microbiol. 67: 2705-2711 https://doi.org/10.1128/AEM.67.6.2705-2711.2001
  15. Kerem, Z., K. A. Jensen, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49- 54 https://doi.org/10.1016/S0014-5793(99)00180-5
  16. Kim, C.-H. 1995. Characterization and substrate specificity of an $endo-{\beta}-1$,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl. Envir. Microbiol. 61: 959-965
  17. Kaewintajuk, K., G. H. Chon, J.-S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, J. H. Lee, M. S. Roh, Y. Y. Choi, H. Park, and Y. S. Lee. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261
  18. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
  20. Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O.-H. Jhee, J. Kang, W. H. Kim, K.-M. Choi, G.-S. Park, J.-S. Lee, H. Park, M. S. Roh, and Y.-S. Lee. 2006. Selection of multienzyme complex-producing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275
  21. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
  22. Tachaapaikoon, C., Y. S. Lee, K. Ratanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Roh, and S.-K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618
  23. Tomme, P., R. A. J. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81 https://doi.org/10.1016/S0065-2911(08)60143-5
  24. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanases in microorganisms: Functions and applications. Microbiol. Rev. 52: 305-317
  25. Woodward, J. 1991. Synergism in cellulose systems. Bioresour. Technol. 36: 67-75 https://doi.org/10.1016/0960-8524(91)90100-X
  26. Yamanobe, T., Y. Mitsuishi, and M. Yagisawa. 1988. Purification and some properties of a microcrystalline cellulosehydrolyzing enzyme (Avicelase II) from fungal strain Y-94. Agric. Biol. Chem. 52: 2493-2524 https://doi.org/10.1271/bbb1961.52.2493
  27. Yoon, J.-J. and Y.-K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43: 487-492