DOI QR코드

DOI QR Code

Aerobic Composting Process of Garbage using Thermoacidophilic Bacillus sp. SJ-15.

고온.내산성 Bacillus sp. SJ-15를 이용한 음식물 쓰레기의 호기적 퇴비화

  • Kim, Choon-Hee (Department of Biomaterial Control(BK21 program), Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control(BK21 program), Dong-Eui University) ;
  • Choi, Woo-Bong (Department of Biomaterial Control(BK21 program), Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control(BK21 program), Dong-Eui University) ;
  • Kang, Byoung-Won (Department of chemistry, Dong-Eui University) ;
  • Kim, Hweh-Su (Oklin Co.) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control(BK21 program), Dong-Eui University)
  • 김춘희 (동의대학교 바이오물질제어학과) ;
  • 남수완 (동의대학교 바이오물질제어학과) ;
  • 최우봉 (동의대학교 바이오물질제어학과) ;
  • 이종환 (동의대학교 바이오물질제어학과) ;
  • 강병원 (동의대학교 화학과) ;
  • 김회수 ((주)오클린) ;
  • 전숭종 (동의대학교 바이오물질제어학과)
  • Published : 2007.05.25

Abstract

A thermoacidophilic bacterium was isolated from the compost and designated as Bacillus sp. SJ-15 by physiological and biochemical characteristics. The optimum temperature and pH for growth were at $55^{\circ}C$ and pH 5.0, respectively. The strain SJ-15 was adapted in process of accelerated high-temperature composting of garbage. The highest viable cell count of composting process reached to $9.2{\times}10^9/ml$ in 16 hours. After running times of 100 days, the composting process showed a reduction rate of approximately 88%, and the concentrations of components were sufficiently high or low to satisfied the standard of organic compost except for salinity.

고온 내산성 미생물을 퇴비에서 분리하고, 생리 및 생화학적 특성을 조사하여 Bacillus sp. SJ-15로 명명하였다. 생장을 위한 최적 온도와 pH는 각각 $55^{\circ}C$와 5.0 이었다. 분리된 SJ-15 균주는 음식물쓰레기의 고온 고속 퇴비화 공정에 적용하였다. 퇴비화 과정에서 16시간 만에 최대 생균수인 $9.2{\times}10^9/ml$를 나타내었다. 본 퇴비화 공정은 개시 100일 후에 약 88%의 감량율을 나타내었고, 퇴비성분의 농도를 분석한 결과 본 공정을 통해 생산된 퇴비는 염분을 제외하면 유기질 비료의 기준을 모두 만족하는 것으로 나타났다.

Keywords

References

  1. APHA 1995. Standard methods for the examination of wastewater, 19th Ed., Washington, DC, USA: American Public Health Association
  2. Cu, N. Y., B. W. Kim, S. W. Nam, H. J. Kwon, D. E. Kim, Y. M. Kim and S. J. Jeon. 2006. Study on production of poly-gamma-glutamic acid by Bacillus subtilis CH-10. Journal of Life Science 16, 175-179 https://doi.org/10.5352/JLS.2006.16.2.175
  3. Kim, H. J., J. H. Kim, D. I. Oh, S. C. Kim, N. H. Lee and N. J. Kim. 2005. Effect of Moisture on Stabilization of Municipal Solid Wastes in Anaerobic Landfill. J. Kor. Org. Res. Rec. Ass. 13, 124-131
  4. Kim, N. C. and B. M. Jang. 2006. The experiment of process efficiency and salt elimination in food waste compost using triple salt. J. Kor. Org. Res. Rec. Ass. 14, 83-90
  5. Ministry of environment. 2002. Methods for soil pollution process test, pp.118-194
  6. Nakasaki, K., M. Shoda and H. 1985. Kubota. Change in microbial numbers during thermophilic composing of sewage sludge with reference to $CO_2$ evolution rate. Appl. Environ. Microbiol. 49, 37-41
  7. Phae, C. G., H. K. Kim and H. S. Sim. 1999. Treatment of Human Manure by Thermophilic Aerobic Digestion System Using Thermophilic Bacteria. J. Kor. Org. Res. Rec. Ass. 16, 526-535
  8. Ryu, S. Y., M. J. Park, S. Y. Kim and K. Y. Lee. 2002. Aerobic Liquid Fermentation of Residual Food Waste by Thermophilic Bacteria. J. Kor. Org. Res. Rec. Ass. 10, 126-131
  9. Sveath, P. H. A., N. S. Mair, M. E. Sharpe and J. G. Holt. 1984. Bergy's Manual of Systematic Bacteriology. Vol. 2, Williams and Wilkins, Baltimore