DOI QR코드

DOI QR Code

Upregulation of heme oxygenase-1 by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells.

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 heme oxygenase-1의 표현증가

  • Lee, Won-Chol (Department of Oriental Internal Medicine, College of Oriental Medicine, Dongguk University) ;
  • Kim, Wan-Sik (Department of Oriental Internal Medicine, College of Oriental Medicine, Dongguk University) ;
  • Shin, Gil-Jo (Department of Oriental Internal Medicine, College of Oriental Medicine, Dongguk University) ;
  • Moon, Il-Soo (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Jung, Seung-Hyun (Department of Oriental Internal Medicine, College of Oriental Medicine, Dongguk University)
  • 이원철 (동국대학교 한의과대학 내과학교실) ;
  • 김완식 (동국대학교 한의과대학 내과학교실) ;
  • 신길조 (동국대학교 한의과대학 내과학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 정승현 (동국대학교 한의과대학 내과학교실)
  • Published : 2007.05.25

Abstract

Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of heme oxygenase-1(HO-1), which has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis. Rat cerebrocortical day In vitro(DIV)12 cells were grown in neurobasal medium. On DIV12 cells were treated with SB($20{\mu}g/ml$) and given a hypoxic shock ($2%\;O_2/5%\;CO_2,\;3\;hr$) on DIV14. In situ hybridization results revealed that SB upregulated HO-1 mRNA in neuronal dendrites in both normoxia and hypoxia(38.5% and 59.2%, respectively). At the protein level, SB upregulated HO-1 in the neuronal soma in both normoxia and hypoxia(22.4% and 15.7%, respectively). Interestingly, most significant increase was associated with astrocytes, which increased HO-1 protein by 77.5% compared to SB-untreated culture. These results indicate that SB upregulates both neuronal and glial HO-1 expression, which contributes to the neuroprotection efficacy in hypoxia).

Keywords

References

  1. Beschorner, R., D. Adjodah, J. M. Schilalo, M. Mittelbronn, I. Pedal, R. Mattern, H. J. Schluesener and R. Meyermann. 2000. Long-term expression of heme oxygenase-1 (HO-1, HSP 32) following focal cerebral infarctions and traumatic brain injury in human. Acta Neuropathol. 100, 377-384 https://doi.org/10.1007/s004010000202
  2. Bickler, P. E. and P. H. Donohoe. 2002. Adaptive re¬sponses of vertebrate neurons to hypoxia. J. Exp. BioI. 205, 3579-3586
  3. Brewer, G. J., J. R. Torricelli, E. K. Evege and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576 https://doi.org/10.1002/jnr.490350513
  4. Burmester, T. and T. Hankeln. 2004. Neuroglobin: a respiratory protein of the nervous system. News Physiol Sci. 19, 110-113
  5. Cai, J. and D. P. Jones. 1998. Superoxide in apoptosis, Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273, 114001-114014
  6. Carmeliet, P., Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, E. Keshert and E. Keshet. 1998. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490 https://doi.org/10.1038/28867
  7. David, J. C., W. C. Boelens and J. F. Grongnet. 2006. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J. Neurochem. 99, 570-581 https://doi.org/10.1111/j.1471-4159.2006.04071.x
  8. Dwyer, B. E., R. M. Nishimura and S. Y. Lu. 1995. Differential expression of heme oxygenase 1 in cultured cortical neurons and astrocytes determined by the aid of a new heme oxygenase antibody: response to oxidative stress. Mol. Brain Res. 30, 37-47 https://doi.org/10.1016/0169-328X(94)00273-H
  9. Ebert, B. L., J. D. Firth and P. J. Ratcliffe. 1995. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J. Biol. Chem. 270, 29083-29089 https://doi.org/10.1074/jbc.270.49.29083
  10. Erecinska, M. and I. A. Silver. 2001. Tissue oxygenation and brain sensitivity to hypoxia. Resp. Physiol. 128, 263-276 https://doi.org/10.1016/S0034-5687(01)00306-1
  11. Fridorich, L. 1978. The biology of oxygen radicals. Science 201, 875-881 https://doi.org/10.1126/science.210504
  12. Fukuyama, N., S. Takizawa, H. Ishida, K. Hoshiai and Y. Shinohara. 1998. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J. Cereb. Blood Flow Metab. 18, 123-129 https://doi.org/10.1097/00004647-199802000-00001
  13. Garnier, P., C. Demougeot, N. Bertrand, A. Prigent-Tessier, C. Marie and Beley. 2001. Stress response to hypoxia in gerbil brain: HO-1 and Mn SOD expression and glial activation. Brain Res. 893, 301-309 https://doi.org/10.1016/S0006-8993(01)02009-1
  14. Geddes, J. W., L. C. Pettigrew, M. L. Holtz, S. D. Craddock and M. D. Maines. 1996. Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci. Lett. 210, 205-208 https://doi.org/10.1016/0304-3940(96)12703-8
  15. Gleadle, J. M. and P. J. Ratcliffe. 1998. Hypoxia and the regulation of gene expression. Mol. Med. Today 4, 122-129 https://doi.org/10.1016/S1357-4310(97)01198-2
  16. Goldberg, M. A., S. P. Dunning and H. F. Bunn. 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415 https://doi.org/10.1126/science.2849206
  17. Haddad, J. J. and S. C. Land. 2000. $O_2$-evoked regulation of HIF-1a and $NF_{\kappa}B$ in perinatal lung epithelium requires glutathione biosynthesis. Am, J. Physiol, Lung Cell Mol. Physiol. 278, L492-L503
  18. Hansen, A. 1985. Extracellular potassium concentration in juvenile and adult brain cortex during anoxia. Acta Physiol. Scand. 99, 412-428 https://doi.org/10.1111/j.1748-1716.1977.tb10394.x
  19. Hochachka, P. W. and P. Lutz, 2001. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B. 130, 435-459 https://doi.org/10.1016/S1096-4959(01)00408-0
  20. Kapturczak, M. H., E. Wasserfall, T. Brusko, M. Campbell Thompson, T. M. Ellis, M. A. Atkinson and A. Agarwal. 2004. Heme oxygenase-1 modulates early inflammatory responses. Evidence from the heme oxygenase-1 deficient mouse. Am. J. Pathol. 165, 1045-1053 https://doi.org/10.1016/S0002-9440(10)63365-2
  21. Jeon B. H., S. T. Park and B. R. Park. 1997. Effect of Epimedium Koreanum Nakai on Oxidant - Induced Neurotoxicity in Cultured Bovine Oligodendrocytes. Korean Journal of Physiology & Pathology 11, 58-62
  22. Kim G. H., S, H. Jung, J. W. Kim, H. S. Eom, S. H. Jung, G. H. Shin, W. C. Lee and I. S. Moon. 2003. the effect of Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells. The Journal of Korean Oriental Internal Medicine 3, 396-405
  23. Kim S. B. 2003 Effects of Scuteellaria baicalensis Georgi on the gene expression in a hypoxic model of cultured rat cortical cells. Dongguk graduate school
  24. Knickerbocker, D. L. and P. L. Lutz. 2001. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. J. Exp. Biol. 204, 3547-3551
  25. Krieglstein, J. 1990. Pharmacology and drug therapy of cerebral ischemia, pp.347-371. In Schurr, A. and B. M. Rigor (eds), Cerebral ischemia and resuscitation, Boca Raton CRC
  26. Kroemer, G., B. Dallaporta and M. Resche-Rigon. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Ann. Rev. Physiol. 60, 619-642 https://doi.org/10.1146/annurev.physiol.60.1.619
  27. Lando, D., D. Peet, D. Whelan and J. Gorman, 2002. Whitelaw M. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295, 858-861 https://doi.org/10.1126/science.1068592
  28. Laufs, T. L., S. Wystub, S. Reuss, T. Burmester, S. Saaler-Reinhardt and T. Hankeln. 2004. Neuron-specific expression of neuroglobin in mammals. Neurosci. Lett. 362, 83-86 https://doi.org/10.1016/j.neulet.2004.02.072
  29. Lee B. C., H. L. Kang, Y. O. Kim, S. Y Kim, D. K. Ahn, H. K. Park and H.C. Kim. 1999. Neuroprotective Effects of Scutellariae Radix on the Brain ischemia induced by Four-Vessel Occlusion in Rats. The Korea Association of Herbology 14, 89-96
  30. Lee J. H., B. C. Lee, S. T. Park, J. H. Lee, G. C. Lee, B. I. Seo and H. J. Song. 2003. Effect of Salviae Multiorrhizaei Radix on Cultured Mouse Myocardial Cells Damaged by Hydrogen Peroxide. The Korea Association of Herbology 18, 21-25
  31. Lee J. H., S. J. Shin and Y. Moon. 1998. Effect of Scutellaria baicalensis Extract on the Immune Functions, Microbial Growth and Mutagenicity. The Korean Association of Immunobiologists 20, 343-348
  32. Levy, A. P., N. S. Levy, S. Wegner and M. A. Goldberg. 1995. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333-13340 https://doi.org/10.1074/jbc.270.22.13333
  33. Lipton, S. A., Y. B. Choi, Z. H. Pan, S. Z. Lei, H. S. Chen, N. J. Sucher, J. Loscalzo, D. J. Singel and J. S. Stamler. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632 https://doi.org/10.1038/364626a0
  34. Liu, Y. and P. R. Ortiz de Montellano. 2000. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxigenase-1. J. Biol. Chem. 275, 5297-5307 https://doi.org/10.1074/jbc.275.8.5297
  35. Nieminen, A. L. 2003. Apoptosis and necrosis in health and disease: role of mitochondria. Int. Rev. Cytol. 224, 29-55 https://doi.org/10.1016/S0074-7696(05)24002-0
  36. Nilsson, G. E. 2001. Surviving anoxia with the brain turned on. News Physiol Sci. 16, 217-221
  37. Panahian, N., M. Yoshiura and M. D. Maines. 1999. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72, 1187-1203 https://doi.org/10.1111/j.1471-4159.1999.721187.x
  38. Prabhaker, N. R. and J. L. Overholt. 1988. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Resp. Physiol. 122, 209-221
  39. Prabhakar, N. R. and J. L. Overholt. 2001. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Resp. Physiol. 122, 209-221
  40. Rossi, D. J., T. Oshima and D. Attwell. 2000. Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403, 316-321 https://doi.org/10.1038/35002090
  41. Royer, C., J. Lachuer, G. Crouzoulon, J. Roux, J. Peyronnet, J. Mamet, J. Pequignot and Y. Dalmaz. 2000. Effects of gestational hypoxia on mRNA levels of Glut3 and Glut4 transporters, hypoxia inducible factor-1 and thyroid hormone receptors in developing rat brain. Brain Res. 856, 119-128 https://doi.org/10.1016/S0006-8993(99)02365-3
  42. Schipper, H. M. 2004. Heme oxygenase expression in human nervous system disorders. Free Rad. Biol. Med. 37, 1995-2011 https://doi.org/10.1016/j.freeradbiomed.2004.09.015
  43. Semenza, G. L. 1998. Hypoxia-inducible factor 1: master regulator of $O_2$ homeostasis. Curr. Opin. Genet. Dev. 8, 588-594 https://doi.org/10.1016/S0959-437X(98)80016-6
  44. Semenza, G. L., P. H. Roth, H. M. Fang and G. L. Wang. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757-23763
  45. Semenza, G. L., B. H. Jiang, S. W. Leung, R. Passantino, J. P. Concordet, P. Maire and A. Giallongo. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537 https://doi.org/10.1074/jbc.271.51.32529
  46. Semenza, G. L. 1999. Regulation of mammalian $O_2$ ho¬meostasis by hypoxia-inducible factor 1. Ann. Rev. Cell Dev. Biol. 15, 551-578 https://doi.org/10.1146/annurev.cellbio.15.1.551
  47. Stocker, R., Y. Yamamoto, A. F. McDonagh, A. N. Glazer and B. N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-104 https://doi.org/10.1126/science.3029864
  48. Tada-Oikawa, S., Y. Hiraku, M. Kawanishi and S. Kawanishi. 2003. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis, Life Sci. 73, 3277-3288 https://doi.org/10.1016/j.lfs.2003.06.013
  49. Yu, B. P. 1994. Cellular defenses aganist damage from reactive oxygen species. Physiol. Rev. 74, 139-162 https://doi.org/10.1152/physrev.1994.74.1.139
  50. Yun, K. S. 2003 Effects of Scutellaria baicalensis GEORGI (황금) on the Modulation of ROS, MMP, in a Hypoxic Model of Cultured Rat Cortical Cells. Dongguk graduate school
  51. Zhang, J. G., M. A. Timenstein, F. A. Nicholls-Grzemski and M. W. Fariss. 2001. Mitochondrial electron transport inhibitors cause lipid peroxidation dependent and independent cell death:protective roll of antioxidants. Arch. Biochem. Biophysics 393, 87-96 https://doi.org/10.1006/abbi.2001.2486
  52. Ji, H. J., S. I. Lee, and D. G. Ann. 1998. Hanyak-Gyugyuk-Juhae, pp 682-688, Korean medical index com. Seoul
  53. Lee, S. J. 1995. Bon-cho-kang-mok, Deasung Medical press, Seoul
  54. Wang, A. 1989. Bon-cho-bi-yo, pp177-180, Komoonsa, Seoul
  55. Hoe, J. 1999. Dong-Eui-Bo-Gam, pp37,1024, 1937, 1938, Bubinbooks, Seoul
  56. Hwang, D. Y. 1989. Bang-Yak-Hap-Pyun, pp120-123, Namsandang, Seoul
  57. Lee, J. M. 1992. Dongyi-Suse-Bowon, pp272, Yeogang Book publisher
  58. Kim, H. G. 2000. Pharmacology of Korea, pp222-227, Korea medical publisher. Seoul