DOI QR코드

DOI QR Code

Surface maker and gene expression of human adipose stromal cells growing under human serum.

인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현

  • Jun, Eun-Sook (Medical Research Institute, Pusan National University Hosipital) ;
  • Cho, Hyun-Hwa (Department of Physiology, College of Medicine, Pusan National University) ;
  • Joo, Hye-Joon (Department of Physiology, College of Medicine, Pusan National University) ;
  • Kim, Hoe-Kyu (Department of Physiology, College of Medicine, Pusan National University) ;
  • Bae, Yong-Chan (Department of Plastic Surgery, College of Medicine, Pusan National University) ;
  • Jung, Jin-Sup (Medical Research Institute, Pusan National University Hosipital)
  • 전은숙 (부산대학교 의학연구소) ;
  • 조현화 (부산대학교 의학대학 생리학 교실) ;
  • 주혜준 (부산대학교 의학대학 생리학 교실) ;
  • 김회규 (부산대학교 의학대학 생리학 교실) ;
  • 배용찬 (부산대학교 의과대학 성형외과) ;
  • 정진섭 (부산대학교 의학연구소)
  • Published : 2007.05.25

Abstract

Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

인간중간엽줄기세포는(Human mesenchymal stem cells, hMSC) 골수, 지방, 피부, 근육, 혈액에 존재하며, 뼈, 연골, 지방, 근육, 신경세포로 분화가능성이 보고되어 손상조직의 재생을 위한 재료로서뿐만 아니라 유전자치료의 매개체로 이용될 수 있는 가능성이 제안되고 있다. 인간중간엽줄기세포의 적절한 배양조건에는 소 태아혈청(fetal bovine serum, FBS)이 요구되어지므로 세포치료에는 소 태아혈청이 다수 포함되어 있을 것이며 세포배양 배지 유래 소 태아혈청의 단백질에 의한 면역거부반응이 우려된다. 이미 앞선 연구에서 자가혈청 하에서 인체지방줄기세포 분리와 계속적인 세포배양을 실시하였을 때 인체지방줄기세포의 증식능력과 다 분화 능이 유지되며 면역결핍 생쥐에 골수의 말초혈액에서 유래된 CD34세포 이식 시 안착 능을 촉진함을 보였다. 본 연구에서 인체지방줄기세포가 인체혈청 하에서 배양되었을 때 소 태아혈청 하에서 배양할 때 발현하는 표면항원을 유지함을 확인했으며 microarray를 사용하여 유전자 발현을 비교했다. 유 세포 분석을 통하여 인체혈청 하에서 계속적으로 배양된 인체유래지방줄기세포에서 HLA-DR, CD117, CD29 와 CD44 의 발현이 소 태아혈청 하에서 배양했을 때와 비슷함을 밝혔다. 그러나 인체혈청 하에서 배양된 인체지방줄기세포의 유전자 발현형태와 소 태아혈청 하에서 배양된 세포의 유전자 발현형태 간에는 상당한 차이를 보였다. 그러므로 본 연구는 인체혈청 하에서 배양된 인체지방기질줄기세포가 임상적용을 위한 선행 데이터로써 직접적인 추정을 하기 위해서는 인체지방기질줄기세포 이식연구에 in vivo 동물실험연구가 수행되어져야 함을 제시하고 있다.

Keywords

References

  1. Allen, T. D., T. M. Dexter and P. J. Simmons. 1990. Marrow biology and stem cells. Immunology 49, 1-38
  2. Angelopoulou, M., E. Novelli, J. E. Grove, H. M. Rinder, C. Civin, L. Cheng and D. S. Krause. 2003. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Experimental hematology 31, 413-420 https://doi.org/10.1016/S0301-472X(03)00042-0
  3. Beresford, J. N., J. H. Bennett, C. Devlin, P. S. Leboy and M. E. Owen. 1992. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. Journal of cell science 102, 341-351
  4. Brazelton, T. R., F. M. Rossi, G. I. Keshet and H. M. Blau. 2000. From marrow to brain: Expression of neuronal phenotypes in adult mice, Science 290, 1775-1779 https://doi.org/10.1126/science.290.5497.1775
  5. Caplan, A. I. 1991. Mesenchymal stem cells. Journal of orthopaedic research 9, 641-650 https://doi.org/10.1002/jor.1100090504
  6. El-Badri, N. S., A. Hakki, S. Saporta, X. Liang, S. Madhusodanan, A. E. Willing, C. D. Sanberg and P. R. Sanberg. 2006. Cord blood mesenchymal stem cells: potential use neurological disorders. Stem cell development 15(4), 495-506
  7. Friedenstein, A. J., J. F. Gorskaja and N. N. Kulagina 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology 4, 267-274
  8. Horwitz, E. M., P. L. Gordon, W. K. Koo, J. C. Marx, M. D. Neel, R. Y. McNall, L. Muul and T. Hofmann. 2002. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America 99, 8932-8937 https://doi.org/10.1073/pnas.132252399
  9. Kievits, F., W. J. Boerenkamp and P. Ivanyi. 1988. H-2-dependent binding of xenogeneic beta 2-microglobulin from culture media. Journal of Immunology 140, 4253-4255
  10. Kim, S. J., H. H. Cho, Y. J. Kim, S. Y. Seo, H. N. Kim, J. B. Lee, J. H. Kim, J. S. Chung and J. S. Jung. 2005. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and biophysical research communications 329, 25-31 https://doi.org/10.1016/j.bbrc.2005.01.092
  11. Kincade, P.W., G. Lee, C. E. Pietrangeli, S. Hayashi and J. M. Gimble. 1988. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annual review of immunology 7, 111-143 https://doi.org/10.1146/annurev.iy.07.040189.000551
  12. Kuznetsov, S. A., M. H. Mankani and P. G. Robey. 2000. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70, 1780-1787 https://doi.org/10.1097/00007890-200012270-00018
  13. Lichtman, M. A. 1981. The ultrastructure of the hemopoietic environment of the marrow: a review. Experimental hematology 9, 391-410
  14. MacDermott, R. P. and M. J. Bragdon. 1983. Fetal calf serum augmentation during cell separation procedures accounts for the majority of human autologous mixed leukocyte reactivity. Behring Institute Mitteilungen 72, 122-128
  15. Mackensen, A., R. Drager, M. Schlesier, R. Mertelsmann and A. Lindemann. 2000. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer immunology, immunotherapy 49, 152-156 https://doi.org/10.1007/s002620050614
  16. Maitra, B., E. Szekely, K. Gjini, M. J. Laughlin, J. Dennis, S. E. Haynesworth and O. N. Koc. 2004. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone marrow transplantation 33, 597-604 https://doi.org/10.1038/sj.bmt.1704400
  17. Mezey, E., K. J. Chandross, G. Harta, R. A. Maki and S. R. McKercher. 2000. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow, Science 290, 1779-1782 https://doi.org/10.1126/science.290.5497.1779
  18. Moon, M. H., S. Y. Kim, Y. J. Kim, S. J. Kim, J. B. Lee, Y. C. Bae, S. M. Sung and J. S. Jung. 2006. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular physiology and biochemistry 17, 279-290 https://doi.org/10.1159/000094140
  19. Park, E. K., S. Y. Lee, T. H. Kim, P. H. Choung, G. Khang, Y. S. Son, S. K. Kim and S. Y. Kim. 2005. Effect of Heat Inactivated Autologous Serum on Proliferation and Osteoblastic Differentiation of Human Bone Marrow Stem Cells. Tissue Engineering and Regenerative Medicine 2, 55-61
  20. Patricia, A. Z., Z. Min, M. Hiroshi, H. Jerry, F. J. William, J. K. Adam, B. Prosper, L. H. Peter and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue engineering 7, 211-227 https://doi.org/10.1089/107632701300062859
  21. Pittenger, M.F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 https://doi.org/10.1126/science.284.5411.143
  22. Selvaggi, T. A., R. E. Walker and T. A. Fleisher. 1998. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89, 776-779
  23. Spees, J. L., C. A. Gregory, H. Singh, H. A. Tucker, A. Peister, P. J. Lynch, S. C. Hsu, J. Smith and D. J. Prockop. 2004. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Molecular therapy 9, 747-756 https://doi.org/10.1016/j.ymthe.2004.02.012
  24. Stute, N., K. Holtz, M. Bubenheim, C. Lange, F. Blake and A. R. Zander. 2004. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental hematology 32, 1212-1225 https://doi.org/10.1016/j.exphem.2004.09.003
  25. Tuschong, L., S. L. Soenen, R. M. Blaese, F. Candotti and L. M. Muul. 2002. Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Human gene therapy 1, 1605-1610
  26. Van Damme, A., T. Vanden Driessche, D. Collen and M. K. Chuah. 2002. Bone marrow stromal cells as targets for gene therapy. Current gene therapy 2, 195-209 https://doi.org/10.2174/1566523024605645
  27. Van, R. L., C. E. Bayliss and D. A. Roncari. 1976. Cytological and enzymological characterization of adult human adipocyte precursors in culture. The Journal of clinical investigation 58, 699-704 https://doi.org/10.1172/JCI108516
  28. Will, R. G., J. W. Ironside, M. Zeidler, S. N. Cousens, K. Estibeiro, A. Alperovitch, S. Poser, M. Pocchiari, A. Hofman and P. G. Smith. 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925 https://doi.org/10.1016/S0140-6736(96)91412-9
  29. Yamamoto, N., M. Isobe, A. Negishi, H. Yoshimasu, H. Shimokawa, K. Ohya, T. Amagasa and S. Kasugai. 2003. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. Journal of medical and dental Sciences 50, 63-69
  30. Zuk, A. J., M. Zhu, , P. AshjianDe, D. A. Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim and M. H. Hedrick. 2002. Human adipose tissue is a source of multipotent stem cell. Molecular biology cell 13, 4279-4295 https://doi.org/10.1091/mbc.E02-02-0105