DOI QR코드

DOI QR Code

Isolation and characterization of ethyl methane sulfonate(EMS) Arabidopsis mutants capable of germination under saline conditions.

Ethyl methane sulfonate(EMS)에 의해 변이된 애기장대 종자 집단으로부터 염 내성 돌연변이체 선발 및 특성 분석

  • Chung, Moon-Soo (Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University) ;
  • Chung, Jung-Seong (Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University) ;
  • Kim, Cheol-Soo (Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University)
  • 정문수 (전남대학교 식물생명공학부 및 농업식물 스트레스 센터) ;
  • 정정성 (전남대학교 식물생명공학부 및 농업식물 스트레스 센터) ;
  • 김철수 (전남대학교 식물생명공학부 및 농업식물 스트레스 센터)
  • Published : 2007.05.25

Abstract

We conducted a seed germination screening under saline conditions to identify salt tolerance(sto) mutants with ethyl methane sulfonate(EMS) mutagenesis seed pool. During the screening, we identified three mutant lines that seemed to confer elevated salt tolerance in high concentrations of NaCl. At 175 mM NaCl, germination rate of sto42-14 mutant(one of the EMS salt tolerance mutants) was 7-fold higher than that of wild-type plants. Interestingly, sto42-14 mutant exhibited insensitivity to high glucose concentration and growth inhibition to gibberellin. Our results suggest that sto42-14 is involved in salt stress tolerance as well as in glucose and gibberellin response in Arabidopsis.

염 내성 돌연변이체를 선발하기 위하여, ethyl methane sulfonate(EMS)로 처리된 돌연변이 종자 집단을 사용하였다. 150 mM NaCl 고염 스트레스 하에서 종자 발아 내성을 보이는 세 종류의 EMS 돌연변이체를 선발하였다. 세 종류의 EMS 돌연변이체들 중, salt tolerance 42-14(sto42-14) 돌연변이체는 175 mM NaCl 고농도에서 종자 발아율이 대조구(WT)에 비해 7배 이상의 높은 발아율을 보였다. 또한 내염성 sto42-14 돌연변이체는 glucose(Glc)에 대해서도 비감수성을 갖고 있음을 관찰되었고, 흥미롭게도 sto42-14돌연변이체에 $20{\mu}M$ gibberellin(GA)을 처리한 결과, 대조구에 비해 하배축과 뿌리의 생장이 억제됨을 관찰할 수 있었다. 이러한 결과를 바탕으로, 고염 내성 sto42-14 돌연변이체는 Glc 뿐만 아니라 GA호르몬 반응에도 관련되어져 있음을 알 수 있다.

Keywords

References

  1. Adams, P., J. C. Thomas, D. M. Vernon, H. J. Bohnert and R. G. Jensen. 1992. Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33, 1215-1223
  2. Blomberg, A. and L. Adler. 1992. Physiology of osmotolerance in fungi. Adv. Microbial Phys. 33, 145-212 https://doi.org/10.1016/S0065-2911(08)60217-9
  3. Chapin, F. S. 1991. Integrated responses of plants to stress. BioScience 41, 29-36 https://doi.org/10.2307/1311538
  4. Cheeseman, J. M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87, 547-550 https://doi.org/10.1104/pp.87.3.547
  5. Gazzarrini, S. and P. McCourt. 2003. Cross-talk in plant hormone signaling: what Arabidopsis mutants are telling us. Ann. Bot. 91, 605-612 https://doi.org/10.1093/aob/mcg064
  6. Grillo, S., A. Leone, Y. Xu, M. Tucci, R. Francione, P. M. Hasegawa, L. Monti and R. A. Bressan. 1995. Control of osmotin gene expression by ABA and osmotic stressin vegetative tissues of wild-type and ABA-deficient mutants of tomato. Physiol. Plant 93, 498-504 https://doi.org/10.1111/j.1399-3054.1995.tb06849.x
  7. Kim, M. J., G. H. Lim, E. S. Kim, C. B. Ko, K. Y. Yang, J. A. Jeong, M. C. Lee and C. S. Kim. 2007. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. BBRC 354, 440-446
  8. Kirti, P. B., S. Hadi, P. A. Kumar and V. L. Chopra. 1991. Production of sodium-Chloride-tolerant Brassica junceaplants by in vitro selection at the somatic embryo level. Theor. Appl. Genet. 83, 233-237
  9. Liu, J. P. and J. K. Zhu. 1997. Proline accumulation and salt-stress induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 114, 591-596 https://doi.org/10.1104/pp.114.2.591
  10. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  11. Quesada, V., M. R. Ponce and J. L. Micol. 2000. Genetic analysis of salt-tolerant mutants in Arabidopsis thalinana. Genetics 154, 421-436
  12. Qui, Q. S., Y. Guo, M. A. Dietrich, K. S. Schumaker and J. K. Zhu. 2002. Regulation of SOS1, a plasma membrane Na+ /H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99, 8436-8441 https://doi.org/10.1073/pnas.122224699
  13. Rhodes, D., S. Handa and R. A. Bressan, 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 82, 890-903 https://doi.org/10.1104/pp.82.4.890
  14. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning, pp 7.19-7.22, A Laboratory Manual, Ed 2, Cold Spring Harbor Laboratory Press Inc., New York
  15. Shi, H., B. H Lee, S. J. Wu and J. K. Zhu. 2003. overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnol. 21, 81-85 https://doi.org/10.1038/nbt766
  16. Shinozaki, K. and K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327-334 https://doi.org/10.1104/pp.115.2.327
  17. Sumaryati, S., I. Negrutiu and M. Jacobs. 1992. Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor. Appl. Genet. 83, 613-619
  18. Willing, R. P. and A. C. Leopold. 1983. Cellular expansion at low temperature as a cause of membrane lesions. Plant Physiol. 71, 118-121 https://doi.org/10.1104/pp.71.1.118
  19. Yun, D. J. 2005. Molecular mechanism of plant adaption to high salinity. Korean J. Plant Biotechnol. 32, 1-14 https://doi.org/10.5010/JPB.2005.32.1.001
  20. Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6, 66-71 https://doi.org/10.1016/S1360-1385(00)01838-0
  21. Zhu, J. K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329