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Effects of Proton on Lysolipid-induced Actions in OGR1-subfamily GPCRs
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Abstract ~ Lysolipids such as lysophosphatidylcholine (LPC), sphingosylphosphorylcholine (SPC), galactosyl-
sphingosine (psychosine) have been matched as ligands for OGR1-subfamily G-protein-coupled receptors
(GPCR), consisted of OGR1, GPR4, G2A, and TDAGS. Recently, those members of GPCRs have been reported
as proton-sensing GPCRs. We used Jurkat T cells, which express four members of OGR1 subfamily GPCRs
endogenously to investigate effects of proton on lysolipid-induced several cellular events. We found no significant
effect of proton on the lysolipid-induced Ca?* increase and ROS production in Jurkat T cells. Further investigation
is necessary to clarify the relationship of lysolipid and proton on the OGR1-subfamily GPCRs.
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INTRODUCTION

G-protein-coupled receptor is the largest gene family of
human genome. Their importance is glaringly obvious by the
fact that more than 50% of drugs on the market are either ago-
nists or antagonists on GPCRs (Im 2002). Many chemical mes-
sengers such as hormones and neurotransmitters use their own
GPCRs as signal receivers on the target cell membrane. There-
fore, positive or negative modulation of GPCRs with drugs has
been successful tools to treat many diseases such as allergy,
gastric ulcer, and hypertension (Fredriksson et al. 2003; Im
2002, 2004). GPCR activations are evoked by stimuli as
diverse as light, Ca?*, odorants, amino acids, nucleotides, pro-
teins, polypeptides, steroids, and fatty acid derivatives.

The completion of the human genome project has identified
about 865 GPCR genes (Perez 2005). Except sensory recep-
tors, 367 GPCRs have been considered as receptors for endog-
enous ligands in the human genome (Vassilatis et al. 2003).
OGR1 subfamily is composed of four members (OGR 1, GPR4,
G2A, and TDAGS) and has previously been identified as
receptors for lysolipids; sphingosylphosphorylcholine (SPC),
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lysophosphatidylcholine (LPC) and galactosylsphingosine
(psychosine) (Im et al. 2001; Kabarowski e al. 2001; Xu et al.
2000; Zhu et al. 2001). And their importance has been reported
as like G2A deficient mouse developed an autoimmune syn-
drome similar to systemic lupus erythematosus (SLE) (Le et al.
2001), and therapeutic application of LPC for sepsis was pro-
posed in relation with G2A receptor (Yan et al. 2004). Recently,
Kim et al. reported that GPR4 plays a critial role in SPC-
induced angiogenesis and SPC transactivates VEGF receptor 2
in endothelial cells (Kim et al. 2005). Furthermore, Ikeno et al.
reported that secretary phospholipase A, induce neurite out-
growth in PC12 cells through LPC generation and activation of
G2A receptor (Ikeno et al. 2005). :
Nevertheless, confirmation of the ligand matching of OGR1
subfamily with lysolipids has not been fully supported by pub-
lications of independent research groups (Im 2004, 2005). A
series of publications propose that extracellular proton could be
an activator of the OGR1 subfamily GPCRs (Ishii et al. 2005;
Ludwig et al. 2003; Murakami et al. 2004; Radu et al. 2005;
Wang et al. 2004). More than two independent groups reported
proton-sensing properties of OGR1, GPR4, and TDAGS (Ishii
et al. 2005; Ludwig et al. 2003; Mogi et al. 2005; Murakami et
al. 2004; Radu et al. 2005; Wang et al. 2004). In the case of
G2A, constitutive activation at pH 7.4 has been observed in
many transfected cells by many research groups, however, pH-
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dependent activation was supported only by one group and was
not fully reproduced by another group (Murakami et al. 2004;
Radu et al. 2005).

Reactive oxygen species (ROS) exert numerous effects on
cell functions, including induction of growth and regulation of
kinase activity (Finkel 2000; Larsson and Cerutti 1988;
Schreck et al. 1991). Oxidative stress plays a prominent role in
the functioning of the immune system at both physiological and
pathological levels, and also is known to be associated with
reduced or abnormal immune function with aging (Lieber
1998), AIDS (Dobmeyer et al. 1997), diabetes (Dandona et al.
1996), smoking-related pathologies (McAllister-Sistilli et al.
1998), and some autoimmune and inflammatory diseases
(Frenkel et al. 1992).

Calcium is a ubiquitous second messenger controlling a
broad range of cellular functions, and an increase of intracellu-
lar Ca?* concentration ([Ca?*],) plays an important role in cellu-
lar functions such as cell proliferation and insulin secretion
(Himmel et al. 1998; Lipskaia and Lompre 2004).

Lysophospholipids regulate a variety of biological processes
including cell proliferation, tumor cell invasiveness, and
inflammation (Moolenaar 1999; Spiegel and Milstien 1995).
Jurkat T cell line is homogeneous T lymphocytes and possess
membrane markers that characterize normal T lymphocytes
(Konikova et al. 1992). In the previous study, LPC was found
to induce ROS generation and [Ca?*]; increase in human lym-
phocytic Jurkat T cells (Irh et al. 2006). Furthermore, four
members of OGR1 subfamily GPCRs are expressed endoge-
nously (Im ez al. 2006). Because all four members of OGR1
subfamily GPCR were detected at mRNA level in Jurkat T
cells, we applied this cell line as a model. 4

MATERIALS AND METHODS

Materials

1-palmitoyl (C16:0) LPC, 1-oleoyl lysophosphatidic acid
(LPA), sphingosyl phosphorylcholine (SPC), sphingosine 1-
phosphate (S1P), and galactosyl sphingosine (psychosine, Psy)
were purchased from Avanti Polar Lipids (Alabaster, AL,
USA); fura 2/acetoxymethyl ester was from Calbiochem (Darms-
tadt, Germany). 2°,7° dichlorofluorescin diacetate (DCFDA)
were from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture
Jurkat T cells were maintained in RPMI 1640 containing 10
% (viv) fetal bovine serum, 100 units/ml penicillin, 50 pg/ml

streptomycin, 2 mM glutamine, and 1 mM sodium pyruvate at
37°C in a humidified 5% CO incubator.

Measurement of ROS

Jurkat T cells were sedimented, resuspended in Hepes-buff-
ered media (HBM) consisting of 20 mM Hepes (pH 7.4), 103
mM NaCl, 4.8 mM KCl, 1.2 mM KH,PO,, 1.2 mM MgSO,,
0.5 mM CaCl,, 25 mM NaHCO; and 15 mM glucose, and then
incubated for 20 min with 10 uM DCFDA at pH 7.4. Then, the
cells were used for the measurements. Fluorescence was mea-
sured in DCFDA-loaded cells. Fluorescence emission at 520
nm wavelength from 488 nm excitation wavelength was mea-
sured every 0.1 sec by an F4500 fluorescent spectrophotometer
(Hitachi, Japan). The extracellular pH was adjusted by addition
of pre-calculated amounts of 1 N HCl for each pH like 7.1, 6.8,
and 6.5. After 15 sec, fluorescent intensity was recorded at the
first 60 sec, 60 sec after lipid addition and 10 min later. Individ-
val histogram was made by the percent of control level, and
ROS was measured more than twice (Im et al. 2006).

Measurement of intracellular Ca?* concentration
Different pHs of HBM were adjusted just before the experi-
ments by addition of 1 N HCIL. The Jurkat T cells were sedi-
mented, resuspended in the HBM (pH 7.4), and then incubated
for 40 min with 5 pM fura 2/acetoxymethyl ester at pH 7.4.
Fura 2-loaded cells were washed twice with each HBM with
different pH and resuspended in the same media. Fluorescence
emission at 510 nm wavelength from two excitation wave-
lengths (340 nm and 380 nm) were measured every 0.1 sec
(F4500, Hitachi, Japan). The ratio of fluorescence intensities
from the two wavelengths was monitored as an estimate of
intracellular Ca?* concentration ([Ca®*],) (Lee et al. 2006).

Data presentation and statistical analysis

Representative traces for intracellular Ca** concentration
were chosen from 3-5 separate experiments and are shown in
Figs 1 and 2. In Fig 3, results from two separate experiments
were shown by the percent of control level.

RESULTS

Effect of extracellular pH on LPC-induced [Ca?*}; increase
Because all four members of OGR1 subfamily GPCR were
detected at mRNA level in Jurkat T cells, we applied this cell
line as a model to study functions of endogenous OGRI1
GPCRs. Recent data show that LPC elevates the intracellular
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Fig. 1. Effect of proton on LPC-induced increase of intracellular Ca?* concentration. After loading Fura-2/AM into Jurkat T cells (1.5
x10%cells/ml) described in Method section, cells suspended in HBM with different pHs without BSA were divided into 2 ml cuvette.
Each trace was monitored and saved for F4500 fluorescent spectrophotometer. Representative Ca®* traces with 20 uM of LPC in
Jurkat T cells at different extracellular pH. LPC was added at the arrow indicated. The data shown are representative of three

independent experiments.

Ca?* concentration in Jurkat T cells (Im et al. 2006; Legradi ez
al. 2004). As shown in Fig. 1, 20 uM concentration of LPC
sharply increased [Ca?*]; in Jurkat T cells. The effect of extra-
cellular pH on LPC-induced increase of [Ca®*]; was studied. As
shown in Fig 1, the increase was not influenced by lowering
extracellular pH upto 6.5. Further, we tested effects of other
lysolipids including SPC, Psy, LPA, and S1P. Those lipids did
not increase the intracellular Ca®* concentration in different

extracellular pHs (Fig. 2).

Effect of extracellular pH on LPC stimulated ROS gener-
ation in Jurkat T cells

Previously, we reported that LPC rapidly and significantly
increased reactive oxygen species (ROS) level in Jurkat T cells
(Im et al. 2006). We measured changes of ROS levels by lyso-
lipids and influences of extracellular pH on the effect. As
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Fig. 2. Effect of lysolipid on intracellular Ca®* concentration at different extracellular pH. Representative Ca* traces with 20 uM of
SPC, S1P, Psy, or LPA in Jurkat T cells at different extracellular pH. Each lipid was added at the arrow indicated. The data shown are

representative of three independent experiments.
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Fig. 3. Effect of proton on lysolipid-induced increase of ROS generation. After loading DCFDA into Jurkat T cells (1.5x10° cells/ml)
as described in Method section, cells suspended in HBM without BSA were divided into 2 ml cuvette. Each trace was monitored and
saved for F4500 fluorescent spectrophotometer. After adjusting the pH by HCI, fluorescent intensity was monitored at the first 60 sec,
60 sec after lipid addition and 10 min later. The first ten points of each step of times were averaged, and individual histogram was
made by the percent of control level. Open column means ROS level after lysolipid addition and filled column means ROS level 10

min after lysolipid addition.

shown in Fig. 3, LPC increased ROS most prominently and the
increase was followed by LPA and S1P. Effect of proton on
lysolipid-induced ROS generation was tested by changing
extracellular pH (Fig. 3). However, decrease of extracellular
pH, in other word increase of proton in the media, did not affect
on the increase of ROS by each lipid (Fig. 3).

DISCUSSION

In the present study, we were not able to find any effect of
proton on lysolipid-mediated responses such as Ca?* increase
and ROS generation. Proton itself also did not induce any
change in Ca** increase in Jurkat T cells (data not shown). In
the previous study, we concluded that LPC-induced Ca®*
increase and ROS generation may not be mediated through
GPCRs in Jurkat T cells. In this study, we found no effect of
proton on lysolipid-induced responses. Even though four mem-
bers of OGR1 subfamily GPCRs are expressed in Jurkat T
cells, no significant change was observed by lysolipid and pro-
ton. Three possibilities could be considered; 1) different signal-
ings of OGR1 subfamily GPCRs triggered by proton in the

Jurkat T cells to signalings of proton reported in overexpression
system of the GPCRs, 2) dysfunction of four OGR1 subfamily
GPCRs in the Jurkat T cells, and 3) the idea of proton-sensing
GPCR of OGR1 subfamily GPCRs may not be correct as like
lysolipid.
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