DOI QR코드

DOI QR Code

Isolation of Pseudoalteromonas sp. HJ 47 from Deep Sea Water of East Sea and Characterization of its Extracellular Protease

동해 심층수로부터 Pseudoalteromonas sp. HJ 47의 분리 및 체외단백질분해효소 특성

  • Cha, In-Tae (Division of Life Sciences, College of Natural Sciences and Institute for Basic Science, Chungbuk National University) ;
  • Lim, Hayung-Joon (Division of Life Sciences, College of Natural Sciences and Institute for Basic Science, Chungbuk National University) ;
  • Roh, Dong-Hyun (Division of Life Sciences, College of Natural Sciences and Institute for Basic Science, Chungbuk National University)
  • 차인태 (충북대학교 자연과학대학 생명과학부 및 기초과학연구소) ;
  • 임형준 (충북대학교 자연과학대학 생명과학부 및 기초과학연구소) ;
  • 노동현 (충북대학교 자연과학대학 생명과학부 및 기초과학연구소)
  • Published : 2007.02.28

Abstract

Proteases are enzymes that break peptide bonds between amino acids of other proteins and occupy a crucial position with respect to their applications in both physiological and commercial fields. In order to screen new source of protease, bacteria producing extracellular proteases at low temperature were isolated from deep sea water of East Sea, Korea. A bacterium showing the best growth rate and production of an extracellular protease at low temperature was designated HJ 47. The DNA sequence analysis of the 16S rRNA gene, phenotypic tests and morphology led to the placement of this organism in the genus Pseudoalteromonas. Although maximal growth was observed at $37^{\circ}C$, enzyme production per culture time was maximum at $20^{\circ}C$. At this temperature, extracellluar protease production was detected from the end of the exponential phage to stationary phase, and maximal at 15 hours after initial production. The optimum temperature and pH of the protease were found to be $35^{\circ}C$ and 8.

단백질분해효소는 다른 단백질들의 아미노산 간에 존재하는 peptide 결합을 절단하며 생리학적, 상업적 측면에서 중요한 위치를 차지하는 효소의 한 부류이다. 이러한 단백질분해효소의 새로운 공급원을 찾기 위하여 비교적 저온에서 체외단백질분해효소를 생산하는 세균을 동해심층수로부터 분리하였다. 분리된 균 중 저온에서의 생육정도와 높은 활성을 가지는 균주를 선별하여 HJ 47이라 명명하였다. 형태학적, 생리생화학적 특성과 16s rRNA gene의 염기서열을 조사한 후 Pseudoalteromonas sp.에 포함하는 것으로 나타났다. 분리된 Pseudoalteromonas sp. HJ 47은 $10^{\circ}C$에서도 비교적 잘 자랐으며, $37^{\circ}C$에서 최적의 생육을 보여 주었다. 최적생육온도와는 달리 배양시간당 최대 체외단백질분해효소의 생산은 $20^{\circ}C$에서 최대였고 대수기 후반과 정지기에 생산이 시작되어 15시간 경과 후 최대의 생산을 보여주었다. 효소활성의 최적온도는 $35^{\circ}C$, 최적 pH는 8로 판명되었다.

Keywords

References

  1. Argos, P. 1987. A sensitive procedure to compare amino acid sequences. J. Mol. Biol. 193, 385-396 https://doi.org/10.1016/0022-2836(87)90226-9
  2. Barett, A. J. 1994. Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol. 244, 1-15 https://doi.org/10.1016/0076-6879(94)44003-4
  3. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992-993
  4. Cavicchioli, R., K. S. Siddiqui, D. Andrews and K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253-261 https://doi.org/10.1016/S0958-1669(02)00317-8
  5. Cornelis, G. R. 1998. The Yersinia deadly kiss. J. Bacteriol. 180, 5495-5504
  6. Cornelis, G. R., A. Boland, A. P. Boyd, C. Geuijen, M. Iriarte, C. Neyt, M. P. Sory and I. Stainier. 1998. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62, 1315-1352
  7. Cowan, D. 1983. Industrial applications: Proteins. pp. 353-374, In Godfrey, T. and S. West (ed.), Industrial enzymology- The application of enzymes in industry. The Nature Press, New York
  8. Doucette, G. J. 1995. Interactions between bacteria and harmful algae: a review. Nat. Toxins 3, 65-74 https://doi.org/10.1002/nt.2620030202
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  10. Gauthier, G., M. Gauthier and R. Christen. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45, 755-761 https://doi.org/10.1099/00207713-45-4-755
  11. Giovannoni, S. 1991. The polymerase chain reaction, pp. 177-204. In Stackebrandt, E. and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. Chichester: John Wiley & Sons
  12. Godfrey, T. and S. West. 1996. Industrial enzymology. 2nd ed. Macmillan Publisher Inc., New York
  13. Hartley, B. S. 1960. Proteolytic enzymes. Annu. Rev. Biochem. 29, 45-72 https://doi.org/10.1146/annurev.bi.29.070160.000401
  14. International Union of Biochemistry. 1992. Enzyme nomenclature. Academic Press, Inc., Orlando, Fla
  15. Lane, D. J. 1991. 16S/23S rRNA sequencing. pp. 115-174. In Stackerbrandt, E. and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. Chichester: John Wiley & Sons
  16. Lee, S. O., J. Kato, N. Takiguchi, A. Kuroda, T. Ikeda, A. Mitsutani and H. Ohtake. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334-4339 https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  17. Lovejoy, C., J. P. Bowman and G. M. Hallegraeff. 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gynmodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806-13
  18. Madigan, M. T., J. M. Martinko and J. Parker. 2003. Brock biology of microorganisms. pp. 142-145, 10th eds., Prentice Hall. Pearson Education, Inc, New Jersey
  19. Mateos, D., J. Anguita, G. Naharro and C. Paniagua. 1993. Influence of growth temperature on the production of extracellular virulence factors and pathogenicity of environmental and human strains of Aeromonas hydrophila. J. Appl. Bacteriol. 74, 111-118 https://doi.org/10.1111/j.1365-2672.1993.tb03003.x
  20. Mayali, X. and F. Azam. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139-144 https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  21. Moon, D. S., D. H. Jung, H. J. Kim and P. K. Shin. 2004. Comparative analysis on resources characterisitics of deep ocean water and brine groundwater. J. of Korean Soc. Marine Environ. Eng. 7, 42-46
  22. Morita, R. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39, 144-167
  23. O'Reilly, R. and F. Day. 1983. Effects of culture conditions on protease production by Aeromonas hydrophila. Appl. Environ. Microbiol. 45, 1132-1135
  24. Park, J. W., Y. S. Oh, J. Y. Lim and D. H. Roh. 2006a. Isolation and characterization of cold-adapted strains producing 13-galactosidase. J. Microbiol. 44, 396-402
  25. Park, J. W., J. S. Yoo and D. H. Roh. 2006b. Identification of novel psychrotolerant bacterial strain and production of ${\beta}$-gallactosidase. The Korean J. of Microbiol. 42, 40-46
  26. Rao, M. B., A. M. Tanksale, M. S. Ghatge and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635
  27. Rawlings, N. D. and A. J. Barrett. 1993. Evolutionary families of peptidases. Biochem. J. 290, 205-218 https://doi.org/10.1042/bj2900205
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  29. Secades, P. and J. A. Guijarro. 1999. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl. Environ. Microbiol. 65, 3969-3975
  30. Sogin, M. L., H. C. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta and C. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored 'rare biosphere'. Proc. Natl. Acad. Sci. U. S. A. 103, 12115-12120 https://doi.org/10.1073/pnas.0605127103
  31. Weisburg, W. G., S. M. Barns, D. A. Pelletier and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  32. Windle, H. J. and D. Kelleher. 1997. Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect. lmmun. 65, 3132-3137

Cited by

  1. Characterization and optimum production condition of extracellular protease from Pseudoalteromonas donghaensis HJ51 vol.51, pp.1, 2015, https://doi.org/10.7845/kjm.2015.5012
  2. Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 vol.49, pp.1, 2013, https://doi.org/10.7845/kjm.2013.019
  3. Characterization of extracellular protease from Pseudoxanthomonas sp. WD12 and WD32 vol.59, pp.4, 2016, https://doi.org/10.3839/jabc.2016.049
  4. Production Properties on Extracellular Protease from Chryseobacterium Novel Strain JK1 vol.48, pp.1, 2012, https://doi.org/10.7845/kjm.2012.48.1.048