DOI QR코드

DOI QR Code

애기장대 AtERF11 유전자에 의한 Pseudomonas syringae에 대한 병 저항성 유도

AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana

  • 권택민 (동아대학교 분자생명공학부) ;
  • 정윤희 (동아대학교 분자생명공학부) ;
  • 정순재 (동아대학교 분자생명공학부) ;
  • 이영병 (동아대학교 분자생명공학부) ;
  • 남재성 (동아대학교 분자생명공학부)
  • Kwon, Tack-Min (Division of Molecular Biotechnology, Dong-A University) ;
  • Jung, Yun-Hui (Division of Molecular Biotechnology, Dong-A University) ;
  • Jeong, Soon-Jae (Division of Molecular Biotechnology, Dong-A University) ;
  • Yi, Young-Byung (Division of Molecular Biotechnology, Dong-A University) ;
  • Nam, Jae-Sung (Division of Molecular Biotechnology, Dong-A University)
  • 발행 : 2007.02.28

초록

본 연구는 Affymetrix Arabidopsis DNA chip을 이용하여 비 병원성 인자인 AvrRpt2 단백질에 의해서 특이적으로 전사 과정이 조절되는 애기장대 유전자들을 분리하고 병 저항성 방어체계와 관련한 이들 유전자들의 기능 분석을 시도하였다. 그 중에서 먼저 식물 호르몬인 ethylene의 신호 조절에 관여하는 ERFs (ethylene-responsive element binding factors) 전사조절 유전자 family 중에서 Bla subfamily 그룹으로 알려져 있는 AtERF11 유전자의 병 저항성 관련 기능을 규명하였다. 저항성 유전자 RPS2가 없는 경우에는 비 병원성 인자인 AvrRpt2 단백질은 기주 식물체내의 기초 병저항성을 감소시키고 병원성 세균의 증식을 향상시켜서 병증을 증대시키는 effector로 작용한다는 기존의 연구결과와 유사하게, 저항성 유전자 RPS2가 없는 조건에서 AtERF11 유전자의 발현이 AvrRpt2 단백질의 작용에 의해서 특이적으로 감소되는 것을 확인하였다. 이러한 결과를 바탕으로 AtERF11 유전자는 식물체의 병 저항성 방어기작에 있어서 positive regulator로서 작용하기 때문에 effector로 작용하는 AvrRpt2 단백질에 의해서 조절되는 것으로 추측하였다. 본 가설을 증명하기 위해 AtERF11의 발현을 증폭시킨 애기장대 형질전화체를 제작하고 P. syringae pv. tomato DC 3000에 대한 병저항성을 실험하였다. AtERF11 유전자가 대량 발현하는 형질전화 된 애기장대에서는 야생종에 비해 대략 100배 이상 세균의 증식이 억제되는 강력한 병저항성을 가진다는 것을 검증하였다.

AvrRpt2 protein triggers hypersensitive response (HR) and strong disease resistance when it is translocated from a bacterial pathogen Pseudomonas sp. to host plant cells containing a cognate RPS2 resistance protein through Type III Secretion System (TTSS). However, AvrRpt2 protein can function as the effector that suppresses a basal defense and enhances the disease symptom when functional RPS2 resistance protein is absent in the infected plant cells. Using Affymetrix Arabidopsis DNA chip, we found that many genes were specifically regulated by AvrRpt2 protein in the rps2 Arabidopsis mutant. Here, we showed that expression of AtERF11 that is known as a member of B1a subcluster of AP2/ERF transcription factor family was down regulated specifically by AvrRpt2. To determine its function in plant resistance, we also generated the Arabidopsis thaliana transgenic plants constitutively overexpressing AtERF11 under CaMV 355 promoter, which conferred an enhanced resistance against a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, these results collectively suggest that AtERF11 plays a role as a positive regulator for disease resistance against biotrophic bacterial pathogen in plant.

키워드

참고문헌

  1. Abramovitch, R. and G. B. Martin. 2004. Strategies used by bacterial pathogens to suppress plant defenses. Curr. Opin. Plant Biol. 7, 356-364 https://doi.org/10.1016/j.pbi.2004.05.002
  2. Baker, B., P. Zambryski, B. Staskawicz and S. P. Dinesh-Kumar 1997. Signaling in plant-microbe interactions. Science 276, 726-733 https://doi.org/10.1126/science.276.5313.726
  3. Brown, R. L., K. Kazan, K. C. McGrath, D. J Maclean and J.M. Manners. 2003. A role for the GCC-box in jasmonate mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 132, 1020-1032 https://doi.org/10.1104/pp.102.017814
  4. Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  5. Dangl, J. L. and J. D. G. Jones. 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  6. Flor, H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
  7. Fujimoto, S. Y., M. Ohta, A. Usui, H. Shinshi and M. O. Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 12, 393-404 https://doi.org/10.1105/tpc.12.3.393
  8. Grant, M. R., L. Godiard, E. Straube, T. Ashfield, J. Lewald, A. Stattler, R. W. Innes and J. L. Dangl. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269, 843-846 https://doi.org/10.1126/science.7638602
  9. Gu, Y., C. Yang, Y.K. Thara, J. Zhou and G.B. Martin. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12, 771-786 https://doi.org/10.1105/tpc.12.5.771
  10. Hammond-Kosack, K.E. and J. Parker. 2003. Deciphering plant - pathogen communication: Fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177-193 https://doi.org/10.1016/S0958-1669(03)00035-1
  11. Holt, B. F., D. A. Hubert and J. L. Dangl. 2003. Resistance gene signaling in plants-Complex similarities to animal innate immunity. Curr. Opin. Immunol. 15, 20-25 https://doi.org/10.1016/S0952-7915(02)00014-6
  12. Kwon, T. M. and J. S. Nam 2005. Molecular mechanism of plant immune response. Korean J. Plant Biotechnol 32, 73-83 https://doi.org/10.5010/JPB.2005.32.2.073
  13. Lahaye, T. and B. Ulla, 2001. Molecular secrets of bacterial type lll effector proteins. Trends in Plant Science. 6, 479-485 https://doi.org/10.1016/S1360-1385(01)02083-0
  14. McDowell, J. M. and J. W. Bonnie. 2003. Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnol. 21, 178-183 https://doi.org/10.1016/S0167-7799(03)00053-2
  15. Nawrath, C. and J. Metraux. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404 https://doi.org/10.1105/tpc.11.8.1393
  16. Neal, G and T. L. Reuber. 2004 Regulation of disease resistance pathway by AP2/ERF transcription factors. Current opinion in plant biology. 7, 1-7 https://doi.org/10.1016/j.pbi.2003.11.012
  17. Ohme-Takagi, M. and H. Shinshi. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene responsive element. Plant Cell 7, 173-182 https://doi.org/10.1105/tpc.7.2.173
  18. Onate-Sa'nchez, L. and K. B. Singh. 2002. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128, 1313-1322 https://doi.org/10.1104/pp.010862
  19. Ohta, M., M. Ohme-Takagi and H. Shinshi. 2000. Three ethylene-responsive transcriptional factors in tobacco with distinct transactivation functions. Plant Cell 12, 393-404 https://doi.org/10.1105/tpc.12.3.393
  20. Riechmann, J. L. and E. M. Meyerowitz. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633-646 https://doi.org/10.1515/bchm.1998.379.6.633
  21. Sakuma, Y., Q. Liu, J. G. Dubouzet, H. Abe, K. Shinozaki and K. Yamaguchi-Shinozaki. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009 https://doi.org/10.1006/bbrc.2001.6299
  22. Tao, Y., Z. Xie, W. Chen, J. Glazebrook, H. S. Chang, B. Han, T. Zhu, G. Zou and F. Katagiri. 2003. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330 https://doi.org/10.1105/tpc.007591
  23. Wu, K., L. Tian, J. Hollingworth, D. Brown and B. Miki. 2002. Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol 128, 30-37 https://doi.org/10.1104/pp.010696
  24. Yang, Z., L. Tian, M. Latoszek-Green, D. Brown and K. Wu 2005. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol. Biol. 58, 585-596 https://doi.org/10.1007/s11103-005-7294-5
  25. Zhang, H., Z. Huang, B. Xie, Q. Chen, X. Tian, X. Zhang, H. Zhang, X. Lu, D. Huang and R. Huang. 2004. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220, 262-270 https://doi.org/10.1007/s00425-004-1347-x