DOI QR코드

DOI QR Code

Temporal and Spatial Role of Pupal Stage Specific Cuticle Protein in Artogeia rapae

배추흰나비 용기 특이 큐티클 단백질의 시공간적 역할

  • Shin, Myung-Ja (Dept. of Biological Science, Andong National University) ;
  • Park, Jeong-Nam (Dept. of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Dept. of Biological Science, Andong National University)
  • 신명자 (안동대학교 자연과학대학 생명과학과) ;
  • 박정남 (안동대학교 자연과학대학 생명과학과) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • Published : 2007.02.28

Abstract

Present study aims to investigate the topical distribution of pupal stage specific cuticle protein and its temporal and spatial role during the wing formation of Artogeia rapae. ArCP27(27 kd cuticle protein) was identified as pupal stage specific cuticle protein in cuticle tissues and has not shown any qualitative differences by local portions of body. ArCP27 maintained constant concentration just after pupal ecdysis to 5-day old pupal stage but thereafter decreased. In fat body, ArCP27 was found in both thoracic and abdominal fat body from the last larval to pupal stage. In wing cuticle, ArCP27 began to find from 5-day old pupal stage. Immunologically ArCP27 in thoracic and abdominal cuticle has the response against the ArCP27 at 5-day old pupa but since then has no response. But the antibody against ArCP27 has reacted to 5- and 7-day old pupal and adult wing protein. $^3H-leucine$ was not incorporated into ArCP27 in 5- and 7-day old thoracic and abdominal cuticle but was incorporated into ArCP27 in 7-day old wing cuticle and adult wing, suggesting that ArCP27 partly participates the wing cuticle formation by the process of digestion and reabsorption of old cuticle.

배추흰나비 날개 형성기 동안 용기 특이 큐티클 단백질의 국소부위에 따른 분포와 신생조직합성에 있어 이의 시공간적 역할을 조사하였다. 큐티클에서 27 kd 단백질은 국소 부위에 따른 질적 변화는 거의 없으나 용 초이게 비교적 높은 농도를 보이다가 성충기로 감에 따라 서서히 농도가 낮아지는 양적인 변화를 나타내고 있다. 지방체에서 27 kd 단백질은 용화 후 3일까지는 흉부와 복부에서 전시기에 걸쳐 확인되고 있지만 그 이후 부터는 농도가 감소하는 경향을 나타내고 있다. Western blot 상에서도 27 kd 큐티클 단백질의 흉부와 복부의 국소적인 분포에는 거의 차이가 없으나 용말기와 성충 날개큐티클에서는 동질성을 보여주고 있다. $^{3}H-leucine$은 흉부와 복부 큐티클의 27 kd 단백질에 시공간적인 차이를 두고 통합되고 있으며, 용말기와 우화직전 흉부 큐티클과 복부 큐티클의 27 kd 단백질에서는 확인되지 않았으나 우화직전과 직후의 날개큐티클에 통합되는 패턴을 보여주고 있다. 지방체와 표피에서도 27 kd 단백질에 대한 통합이 두드러지게 나타나고 있다. 27 kd 용기 특이 큐티클 단백질은 국소 부위에 따른 질적, 양적 차이는 나타나지 않았으나 날개 형성기 동안 부분적으로 27 kd 단백질이 포함된 endocuticle이 소화, 재흡수 과정을 통해 성충 날개 큐티클의 형성에 관여할 것으로 생각된다.

Keywords

References

  1. Andersen, S. O. 1988. Characterization of proteins from pharate adult wing of the migratory locust, Locusta migratoria. Insect Biochem. 18(5), 415-421 https://doi.org/10.1016/0020-1790(88)90057-1
  2. Andersen, S. O., P. Hojrub and P. Roepstorff. 1995. Insect cuticular proteins. Insect Biochem. Mol. Biol. 2, 153-176
  3. Andersen, S. O., M. C. Peter and P. Roepstorff. 1996. Cuticular sclerotization in insects. Comp. Biochem. Physiol. 113, 689-705 https://doi.org/10.1016/0305-0491(95)02089-6
  4. Binger, L. C. and J. H. Willis. 1990. In vitro translation of epidermal RNAs from different anatomical regions and metamorphic stages of Hyalophora cecropia. Insect Biochem. 20, 573-583 https://doi.org/10.1016/0020-1790(90)90069-7
  5. Bonner, W. M. and M. Laskey. 1974. A film detection method for tritium proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 83-88 https://doi.org/10.1111/j.1432-1033.1974.tb03599.x
  6. Chihara, C. J., D. J. Silvert and J. W. Fristrom. 1982. The cuticle proteins of Drosophila melanogaster: Stage specificity. Devl. Biol. 89, 379-388 https://doi.org/10.1016/0012-1606(82)90326-8
  7. Csikos, G., K. Molnar, N. H. Borhegyi, G. C. Talian and M. Saaa. 1999. Insect cuticle, an in vivo model of protein trafficking. J. Cell Science. 112, 2113-2124
  8. Cox, D. L. and J. H. Willis. 1985. The cuticular proteins of Hyalophora cecropia from different anatomical regions and metamorphic stages. Insect Biochem. 15, 349-352 https://doi.org/10.1016/0020-1790(85)90026-5
  9. Hawkes, R., E. Niday and J. Cordon. 1982. A dot-immunobinding assay for monoclonal and other antibodies. Analyt. Biochem. 119, 142-147 https://doi.org/10.1016/0003-2697(82)90677-7
  10. Hopkins, T. L and K. J. Kramer. 1992. Insect cuticle sclerotization. Annual Review of Entomol. 37, 273-302 https://doi.org/10.1146/annurev.en.37.010192.001421
  11. Hopkins, T. l., l. J. Krchma, S. A. Ahmad and K. J. Kramer. 2000. Pupal cuticle protein of Manduca sexta: characterization and profiles during sclerotization. Insect Biochem. Mol. Biol. 30, 19-27 https://doi.org/10.1016/S0965-1748(99)00091-0
  12. Klarskov, K., P. Hojrub, S. O. Andersen and P. Roepstorff. 1989. Mass spectrometry as an aid in protein sequence determination. Application of the method on a cuticular protein from the migratory(Locusta migratoria). Biochem. J. 262, 923-930 https://doi.org/10.1042/bj2620923
  13. Kramer, K. J., M. R. Kanost, T. L. Hopkins, H. Jiang, Y. C. Zhu and R. Xu. 2001. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57, 385-392 https://doi.org/10.1016/S0040-4020(00)00949-2
  14. Kumar, M. N. and S. Sridhara. 1994. Characterization of four pupal wing protein genes of the silkmoth Antheraea polyphemus. Insect Biochem. Molec. Biol. 24(3), 291-299 https://doi.org/10.1016/0965-1748(94)90009-4
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the bacteriophage $T_4$. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  16. Marcu, O. and M. Locke. 1998. A cuticular protein from the moulting stages of an insect. Insect Biochem. Mol. Biol. 28, 659-669 https://doi.org/10.1016/S0965-1748(98)00048-4
  17. Nohr, C., P. Hojrub and S. O. Andersen. 1992. Primary structure of two low weight proteins isolated from cuticle of fifth instar nymphs of the locust, Locusta migratoria. Insect Biochem. Mol. Biol. 22, 19-24 https://doi.org/10.1016/0965-1748(92)90095-V
  18. O'Farrell, P. H. 1975. High resolution two dimensional electrophoresis of protein. J. Biol. Chem. 250, 4007-4021
  19. Roberts, P. E. and J. H. Willis. 1980. The cuticular proteins of Tenebrio. I. Electrophoretic banding patterns during postembryonic development. Devl. Biol. 75, 59-69 https://doi.org/10.1016/0012-1606(80)90143-8
  20. Seo, E. W. 1993. Distribution and synthesis of pupal specific cuticle in tissues of Pieris rapae. Kor. J. Entomol. 23(2), 83-90
  21. Seo, E. W. 1995. Qualitative distribution of stage-specific cuticle proteins of Pieris rapae. Kor. J. Zool. 38(1), 88-101
  22. Souliotis, V. L., M. Patrinou-Ceorgoula, V. Zongza and G. T. Dimitriadis. 1988. Isolation and characterization of mRNA coding for the third instar larval proteins of Dacus oleae. Insect Biochem. 18, 829-837 https://doi.org/10.1016/0020-1790(88)90107-2
  23. Stiles, B. and R. A. Leopold. 1990. Cuticle proteins from the Anthonomus abdomen: Stage specificity and immunological relatedness. Insect Biochem. 20, 113-125 https://doi.org/10.1016/0020-1790(90)90003-D
  24. Suderman, R. J., S. O. Andersen, T. L. Hopkins, M. R. Kanost and K. J. Kramer. 2003. Characterization and cDNA cloning of three major proteins from pharate pupal cuticle of Manduca sexta. Insect Biochem. Mol. Biol. 33, 331-343 https://doi.org/10.1016/S0965-1748(02)00247-3
  25. Willis, J. H. 1987. Cuticular proteins: the neglected component. Archs. Biochem. Physiol. 6, 203-215 https://doi.org/10.1002/arch.940060402
  26. Willis, J. H. 1999. Cuticular proteins in insects and crustaceans. Amer. Zool. 39, 600-609 https://doi.org/10.1093/icb/39.3.600