DOI QR코드

DOI QR Code

GroEL-GroES 샤페로닌에 의한 단백질 접힘에 있어서 온도와 변성조건의 영향

Effect of temperature and denaturation conditions on protein folding assisted by GroEL-GroES chaperonin

  • 배유진 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀)) ;
  • 장경진 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀)) ;
  • 전숭종 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀), 동의대학교 공과대학 생명공학과) ;
  • 남수완 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀), 동의대학교 공과대학 생명공학과) ;
  • 이재형 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀), 동의대학교 공과대학 생명공학과) ;
  • 김영만 (동의대학교 생활과학대학 식품영양학과 및 (주)오리엔탈 바이오텍) ;
  • 김동은 (동의대학교 대학원 바이오물질제어학과 (BK2l 사업팀), 동의대학교 공과대학 생명공학과)
  • Bae, Yu-Jin (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Jang, Kyoung-Jin (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control (BK21 program), Dong-Eui University, Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control (BK21 program), Dong-Eui University, Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Lee, Jae-Hyung (Department of Biomaterial Control (BK21 program), Dong-Eui University, Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Kim, Young-Man (Department of Food and Nutrition/Oriental Biotech Co., Dong-Eui University) ;
  • Kim, Dong-Eun (Department of Biomaterial Control (BK21 program), Dong-Eui University, Department of Biotechnology & Bioengineering, Dong-Eui University)
  • 발행 : 2007.02.28

초록

이 연구의 목적은 대장균 분자 샤페론 GroEL의 시험관 내 단백질 접힘에 있어서 반응온도의 영향과 보조샤페론의 필요 여부를 자발적 재접힘이 가능한 온도와 그렇지 않은 온도조건에서 조사하는 것이다. 여러 조건하에서 GroEL에 의한 두 가지 기질 단백질의 재접힘을 반응속도론적으로 조사하기 위하여 GroEL에 의한 단백질 침전생성억제와 변성된 단백질의 재접힘을 광범위하게 조사하였다. 자발적 재접힘이 가능하지 않은 $37^{\circ}C$에서는 ATP와 완전한 GroEL 시스템이 변성된 폴리펩티드의 재접힘을 위하여 필요하다는 것을 확인하였다. 하지만, 자발적 재접힘이 가능한 낮은 온도에서는 자발적 재접힘과 샤페론 의존적 단백질 재접힘이 서로 경쟁하는 것을 알 수 있었다. 따라서 GroEL은 변성된 폴리펩티드의 자발적 접힘 경로를 더 효율적인 단백질 재접힘 경로인 샤페론 의존적 단백질 재접힘 경로로 유도하는 것으로 보인다.

The goal of this study is to investigate effects of temperature and co-chaperonin requirement for in vitro protein refolding assisted by E. coli chaperone GroEL under permissive and nonpermissive temperature conditions. In vitro protein refolding of two denatured proteins was kinetically investigated under several conditions in the presence of GroEL. Effects of temperature and GroES-requirement on the process of prevention of protein aggregation and refolding of denatured protein were extensively monitored. We have found that E. coli GroEL chaperone system along with ATP is required for invitro refolding of unfolded polypeptide under nonpermissive temperature of $37^{\circ}C$. However, under permissive condition spontaneous refolding can occur due to lower temperature, which can competes with chaperone-mediated protein refolding via GroEL chaperone system. Thus, GroEL seemed to divert spontaneous refolding pathway of unfolded polypeptide toward chaperone-assisted refolding pathway, which is more efficient protein refolding pathway.

키워드

참고문헌

  1. Bhattacharyya, A. M. and P. M. Horowitz. 2001. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation. J. Biol. Chem. 276, 28739-28743 https://doi.org/10.1074/jbc.M102500200
  2. Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Rudolph, F. X. Schmid and T. Kiefhaber. 1991. GruE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 30, 1586-1591 https://doi.org/10.1021/bi00220a020
  3. Ewalt, K. L., J. P. Hendrick, W. A. Houry and F. U. Hartl. 1997. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 90, 491-500 https://doi.org/10.1016/S0092-8674(00)80509-7
  4. Ewbank, J. J. and T. E. Creighton. 1991. The molten globule protein conformation probed by disulphide bonds. Nature. 350, 518-520 https://doi.org/10.1038/350518a0
  5. Fayet, O., T. Ziegelhoffer and C. Georgopoulos. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379-1385 https://doi.org/10.1128/jb.171.3.1379-1385.1989
  6. Fenton, W. A., Y. Kashi, K. Furtak and A. L. Horwich. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371, 614-619 https://doi.org/10.1038/371614a0
  7. Goloubinoff, P., S. Diamant, C. Weiss and A Azem. 1997. GruES binding regulates GroEL chaperunin activity under heat shock. FEBS Lett. 407, 215-219 https://doi.org/10.1016/S0014-5793(97)00348-7
  8. Grallert, H. and J. Buchner. 1999. Analysis of GroE-assisted folding under nonpermissive conditions. J. Biol. Chem. 274, 20171-20177 https://doi.org/10.1074/jbc.274.29.20171
  9. Holl-Neugebauer, B., R. Rudolph, M. Schmidt and J. Buchner. 1991. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry. 30, 11609-11614 https://doi.org/10.1021/bi00114a001
  10. Horowitz, P. M. and N. L. Criscimagna. 1990. Stable intermediates can be trapped during the reversible refolding of urea-denatured rhodanese. J. Biol. Chem. 265, 2576-2583
  11. Horwich, A. L., K. B. Low, W. A Fenton, I. N. Hirshfield and K. Furtak. 1993. Folding in vivo of bacterial cytoplasmic pruteins: role of GroEL. Cell. 74, 909-917 https://doi.org/10.1016/0092-8674(93)90470-B
  12. Laminet, A. A., T. Ziegelhoffer, C. Georgopoulos and A. Pluckthun. 1990. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J. 9, 2315-2319
  13. Lorimer, G. H. 1996. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. J. FASEB. 10, 5-9 https://doi.org/10.1096/fasebj.10.1.8566548
  14. Martin, J., A. L. Horwich and F. U. Hartl. 1992. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science. 258, 995-998 https://doi.org/10.1126/science.1359644
  15. Mendoza, J. A., G. H. Lorimer and P. M. Horowitz. 1992. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J. Biol. Chem. 267, 17631-17634
  16. Mendoza, J. A., E. Rogers, G. H. Lorimer and P. M. Horowitz. 1991. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266, 13044-13049
  17. Morimoto, R. I., A Tissieres and C. Georgopoulos. 1994. The biology of heat shock proteins and molecular chperones. Cold Spring Harbor Press, New York
  18. Panda, M., B. M. Gorovits and P. M. Horowitz. 2000. Productive and nonproductive intermediates in the folding of denatured rhodanese. J. Biol. Chem. 275, 63-70 https://doi.org/10.1074/jbc.275.1.63
  19. Ptitsyn, O. B. 1992. in protein Folding (Creighton, T. E., ed) pp 243-300, W. H. Freeman and Co., New York
  20. Schmidt, M., J. Buchner, M. J. Todd, G. H. Lorimer and P. V. Viitanen. 1994. On the role of groES in the chaperonin-assisted folding reaction: Three case studies. J. Biol. Chem. 269, 10304-10311
  21. Srere, P. A. 1966. Citrate-condensing enzyme-oxalacetate binary complex. Studies on its physical and chemical properties. J. Biol. Chem. 241, 2157-2165
  22. Viitanen, P. V., C. K. Donaldson, C. H. Lorimer, T. H. Lubben and A. A. Gatenby. 1991. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry. 30, 9716-9723 https://doi.org/10.1021/bi00104a021
  23. Zhi, W., P. Srere and C. T. Evans. 1991. Conformational stability of pig citrate synthase and some active-site mutants. Biochemistry. 30, 9281-9286 https://doi.org/10.1021/bi00102a021