DOI QR코드

DOI QR Code

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system

신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법

  • Lee, Hyun-Sook (Department of Microbiology, College of National Sciences, Kyungpook National University) ;
  • Cho, Sun-Jung (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Jung, Yong-Wook (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Jin, Ing-Nyol (Department of Microbiology, College of National Sciences, Kyungpook National University) ;
  • Moon, Il-Soo (Department of Anatomy, College of Medicine, Dongguk University)
  • 이현숙 (경북대학교 자연대학 미생물학과) ;
  • 조선정 (동국대학교 의과대학 해부학교실) ;
  • 정용욱 (동국대학교 의과대학 해부학교실) ;
  • 진익렬 (경북대학교 자연대학 미생물학과) ;
  • 문일수 (동국대학교 의과대학 해부학교실)
  • Published : 2007.02.28

Abstract

DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.

형질전환은 유전자의 기능을 이해하는데 매우 중요한 기법이다. $Ca^{2+}$-인산 침전법은 시간과 비용이 저렴하여 가장 흔히 사용된다. 그러나 성숙 신경세포는 어린 신경세포나 다른 세포종에 비하여 형질전환이 어렵고 쉽게 죽는다. 본 연구에서는 Clontech사의 $CalPhos^{TM}$ Mammalian Transfection 방법을 수정하여 성숙한 신경세포를 효율적으로 형질전환할 수 있는 방법을 고안하였다. 대뇌 신경교세포를 DMEM/10% 말혈청에서 70-80% confluence까지 키우고 배지를 혈청이 첨가되지 않은 Neurobasal/Ara-C로 바꾸어 주어 더 이상 신경교세포가 분열하지 않게 한 다음, 여기에 E19 해마신경세포를 접종하여 배양하였다. $DNA/Ca^{2+}$-인산 침전물은 Clontech사의 $CalPhos^{TM}$ Mammalian Transfection Kit을 이용하여 크기($0.5-1\;{\mu}m$ in diameter) 및 농도(약 10 particles/$100\;{\mu}m^2$)를 배지에서 배양시간을 변화시켜 적당히 조절하였다. 이렇게 하면 in vitro에서 2주 이상 배양한 신경세포도 24-well plate 한 well당 10-15개의 형질전환된 건강한 신경세포를 얻을 수 있었다. 이 방법의 효용성을 검증하기 위하여 연접단백질인 $EGFP-CaMKII{\alpha}$ 융합단백질과 RFP 단백질 유전자(각각 $pEGFP-CaMKII{\alpha}$ 및 pDsRed2)를 형질전환한 결과 전자는 점박이 모양, 후자는 세포전체에 퍼진 양상의 표현을 관찰할 수 있었다. 따라서 본 연구는 성숙한 신경세포를 효율적으로 형질전환할 수 있는 방법을 제공한다.

Keywords

References

  1. Barkats, M., A. Bilang-Bleuel, M. H. Buc-Caron, M. N. Castel-Barthe, O. Corti, F. Finiels, P. Horellou, F. Revah, O. Sabate and J. Mallet. 1998. Adenovirus in the brain: recent advances of gene therapy for neurodegenerative diseases. Prog. Neurobiol. 55, 333-341 https://doi.org/10.1016/S0301-0082(98)00028-8
  2. Bennett M. K., N. E. Erondu and M. B. Kennedy. 1983. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J. Biol Chem. 258, 12735-12744
  3. Brewer, G. J., J. R. Torricelli, E. K. Evege and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576 https://doi.org/10.1002/jnr.490350513
  4. Craig, A. M. 1998. Transfecting Cultured Neurons. MIT Press: Cambridge, MA
  5. Goslin, K., H. Asmussen and G. Banker. 1998. Rat hippocampal neurons in low-density culture. In: Banker, G. and K. Goslin. Culturing nerve cells, 2nd ed., p.339-370, Cambridge, MA: MIT Press
  6. Hamm, A., N. Krott, I. Breibach, R. Blindt and A. K. 2002. Bosserhoff, Efficient transfection method for primary cells. Tissue Eng. 8, 235-245 https://doi.org/10.1089/107632702753725003
  7. Janson, C. G., S. W. McPhee, P. Leone, A. Freese and M, J. During. 2001. Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci. 24, 706-712 https://doi.org/10.1016/S0166-2236(00)01954-8
  8. Jiang, M., L. Deng and G. Chen. 2004. High $Ca^{2+}$-phosphate transfection efficiency enables single neuron gene analysis. Gene Ther. 11, 1303-1311 https://doi.org/10.1038/sj.gt.3302305
  9. Kim, H. J., J. F. Greenleaf, R. R. Kinnick, J. T. Bronk and M. E. Bolander. 1996. Ultrasound-mediated transfection of mammalian cells. Human Gene Ther. 7, 1339-1346 https://doi.org/10.1089/hum.1996.7.11-1339
  10. Kohrmann, M., W. Haubensak, I. Hemraj, C. Kaether, V. J. Lessmann and M. A. Kiebler. 1999. Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J. Neurosci. Res. 58, 831-835 https://doi.org/10.1002/(SICI)1097-4547(19991215)58:6<831::AID-JNR10>3.0.CO;2-M
  11. Miller, S. G. and M. B. Kennedy. 1985. Distinct forebrain and cerebellar isozymes of type II $Ca^{2+$/ calmodulin- dependent protein kinase associate differently with the postsynaptic density fraction. J. Biol. Chem. 260, 9039-9046
  12. Pepe, J., M. Rincon and J. Wu. 2004. Experimental comparison of sonoporation and electroporation in cell transfection applications. Acoust. Res. Lett. Online 5, 62-67 https://doi.org/10.1121/1.1652111
  13. Ribotta, M. G. 2001. Gene therapy strategies in neurodegenerative diseases. Histol. Histopathol. 16, 883-893
  14. Takahashi, T., J. P. Misson and V. S. Jr. Caviness. 1990. Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J. Comp. Neurol. 302, 15-28 https://doi.org/10.1002/cne.903020103
  15. Simonato, M., R. Manservigi, P. Marconi and J. Glorioso. 2000. Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci. 23, 183-190 https://doi.org/10.1016/S0166-2236(99)01539-8
  16. Watanabe, S. Y., A. M. Albsoul-Younes, T. Kawano, H. Itoh, Y. Kaziro, S. Nakajima and Y. Nakajim. 1999. Calcium phosphate-mediated transfection of primary cultured brain neurons using GFP expression as a marker: application for single neuron electrophysiology. Neurosci. Res. 33, 71-78 https://doi.org/10.1016/S0168-0102(98)00113-8
  17. Washbourne, P. and A. K. McAlliste. 2002. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566-573 https://doi.org/10.1016/S0959-4388(02)00365-3
  18. Yamamoto, M., S. Okumura, C. Schwencke, J. Sadoshima and Y. Ishikawa. 1999. High efficiency gene transfer by multiple transfection protocol. Histochem. J. 31, 241-243 https://doi.org/10.1023/A:1003598614323
  19. Zhang, W., L. Vazquez, M. Apperson and M. B. Kennedy. 1999. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J. Neurosci. 19, 96-108 https://doi.org/10.1523/JNEUROSCI.19-01-00096.1999

Cited by

  1. SUMO1 modulates Aβ generation via BACE1 accumulation vol.34, pp.3, 2013, https://doi.org/10.1016/j.neurobiolaging.2012.08.005