DOI QR코드

DOI QR Code

Direct tyrosine phosphorylation of Akt/PKB by epidermal growth factor receptor

EGF 수용체에 의한 Akt/PKB의 tyrosine 인산화에 대한 연구

  • Bae, Sun-Sik (Department of Pharmacology and MRC for Ischemic Tissue Regeneration, Pusan National University School Medicine) ;
  • Choi, Jang-Hyun (Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Yun, Sung-Ji (Department of Pharmacology and MRC for Ischemic Tissue Regeneration, Pusan National University School Medicine) ;
  • Kim, Eun-Kyung (Department of Pharmacology and MRC for Ischemic Tissue Regeneration, Pusan National University School Medicine) ;
  • Oh, Yong-Suk (Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Chi-Dae (Department of Pharmacology and MRC for Ischemic Tissue Regeneration, Pusan National University School Medicine) ;
  • Suh, Pann-Ghill (Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2007.02.28

Abstract

Akt/PKB plays pivotal roles in many physiological responses such as proliferation, differentiation, apoptosis, and angiogenesis. Here we show that tyrosine phosphorylation of Akt/PKB is essential for the subsequent phosphorylation at $Thr^{\308}$. Tyrosine phosphorylation of Akt/PKB was induced by stimulation of COS-7 cells with epidermal growth factor receptor (EGF) and its phosphorylation was significantly enhanced by constitutive targeting of Akt/PKB to the plasma membrane by myristoylation. Interestingly, incubation of affinity purified Myc-tagged Akt/PKB with purified EGF receptor resulted in tyrosine phosphorylation as well as $Ser^{\473}$ phosphorylation of Akt/PKB. In addition, tyrosine-phosphorylated Akt/PKB could directly associate with activated EGF receptor in vitro. Finally, alanine mutation at putative tyrosine phosphorylation site $(Tyr^{\326})$ abolished EGF induced $Thr^{\308}$ phosphorylation of wild type as well as constitutively active form of Akt/PKB. Given these results we suggest here that direct tyrosine phosphorylation of Akt/PKB by EGF receptor could be another mechanism of EGF-induced control of many physiological responses.

Akt/PKB는 세포의 증식, 분화, 사멸, 혈관신생 등 매우 많은 생리활성 조절에 있어 매우 중요한 역할을 수행한다. 우리는 Akt/PKB의 tyrosine잔기의 인산화가 $Thr^{\308}$ 인산화에 필수적임을 밝혔다. COS-7 세포주에 EGF를 처 리하면 Akt/PKB의 tyrosine 잔기에 인산화가 촉진되었으며 이러한 인산화 촉진은 Akt/PKB에 myristoylation site를 이용해 세포막으로 이동시키면 더욱 더 증가하였다. 특히, 분리된 Akt/PKB와 EGF 수용체를 이용해 인산화 반응을 실시하면 tyrosine잔기의 인산화뿐만 아니라 $Ser^{\473}$에 대한 인산화도 증가하였다. 더욱이 tyrosine잔기에 인산화 된 Akt/PKB는 활성화된 EGF 수용체와 직접적인 결합을 이루고 있음을 확인하였다. 마지막으로 예측되는 tyrosine 잔기인 $(Tyr^{\326})$을 Alanine으로 치환하면 정상 Akt/PKB뿐만 아니라 활성화된 Akt/PKB의 EGF에 의한 $Thr^{\308}$ 인산화가 사라짐을 확인하였다. 이러한 결과들을 바탕으로 EGF 수용체에 의한 직접적인 Akt/PKB의 tyrosine 인산화는 EGF에 의한 많은 생리활성 조절기전의 또 다른 기전이라 볼 수 있다.

Keywords

References

  1. Alessi, D. R., M. Andjelkovic, B. Caudwell, P. Cron, N. Morrice, P. Cohen and B. A. Hemmings. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J. 15, 6541-6551
  2. Andjelkovic, M., D. R. Alessi, R. Meier, A. Fernandez, N. J. Lamb, M. Frech, P. Cron, P. Cohen, J. M. Lucocq and B. A. Hemmings. 1997. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515-31524 https://doi.org/10.1074/jbc.272.50.31515
  3. Bae, S. S., J. H. Choi, Y. S. Oh, D. K. Perry, S. H. Ryu and P. G. Suh. 2001. Proteolytic cleavage of epidermal growth factor receptor by caspases. FEBS Lett. 491, 16-20 https://doi.org/10.1016/S0014-5793(01)02167-6
  4. Bae, S. S., D. K. Perry, Y. S. Oh, J. H. Choi, S. H. Galadari, T. Ghayur, S. H. Ryu, Y. A. Hannun and P. G. Suh. 2000. Proteolytic cleavage of phospholipase C-g1 during apoptosis in Molt-4 cells. FASEB J. 14, 1083-1092 https://doi.org/10.1096/fasebj.14.9.1083
  5. Bellacosa, A., T. O. Chan, N. N. Ahmed, K. Datta, S. Malstrom, D. Stokoe, F. McCormick, J. Feng and P. Tsichlis. 1998. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17, 313-325 https://doi.org/10.1038/sj.onc.1201947
  6. Burgering, B. M. and P. J. Coffer. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599-602 https://doi.org/10.1038/376599a0
  7. Chan, T. O., S. E. Rittenhouse and P. N. Tsichlis. 1999. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965-1014 https://doi.org/10.1146/annurev.biochem.68.1.965
  8. Chen, R., O. Kim, J. Yang, K. Sato, K. M. Eisenmann, J. McCarthy, H. Chen and Y. Qiu. 2001. Regulation of Akt/PKB activation by tyrosine phosphorylation. J. Biol. Chem. 276, 31858-31862 https://doi.org/10.1074/jbc.C100271200
  9. Craxton, A., A Jiang, T. Kurosaki and E. A. Clark. 1999. Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Ald. J. Biol. Chem. 274, 30644-30650 https://doi.org/10.1074/jbc.274.43.30644
  10. Datta, K., A. Bellacosa, T. O. Chan and P. N. Tsichlis. 1996. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Haras, in Sf9 and mammalian cells. J. Biol. Chem. 271, 30835-30839 https://doi.org/10.1074/jbc.271.48.30835
  11. Hresko, R. C. and M. Mueckler. 2005. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 280, 40406-40416 https://doi.org/10.1074/jbc.M508361200
  12. Hu, P., B. Margolis, E. Y. Skolnik, R. Lammers, A. Ullrich and J. Schlessinger. 1992. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol. 12, 981-990 https://doi.org/10.1128/MCB.12.3.981
  13. Jacinto, E., V. Facchinetti, D. Liu, N. Soto, S. Wei, S. Y. Jung, Q. Huang, J. Qin and B. Su. 2006. SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity. Cell 127, 125-137 https://doi.org/10.1016/j.cell.2006.08.033
  14. Kazlauskas, A. and J. A. Cooper. 1989. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58, 1121-1133 https://doi.org/10.1016/0092-8674(89)90510-2
  15. Kohn, A. D., S. A. Summers, M. J. Birnbaum and R. A. Roth. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372-31378 https://doi.org/10.1074/jbc.271.49.31372
  16. Konishi, H., M. Tanaka, Y. Takemura, H. Matsuzaki, Y. Ono, U. Kikkawa and Y. Nishizuka. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to $H_2O_2$. Proc. Natl. Acad. Sci. USA 94, 11233-11237 https://doi.org/10.1073/pnas.94.21.11233
  17. Li, H. L., W. W. Davis, E. L. Whiteman, M. J. Birnbaum and E. Pure. 1999. The tyrosine kinases Syk and Lyn exert opposing effects on the activation of protein kinase Akt/PKB in B lymphocytes. Proc. Natl. Acad. Sci. U S A 96, 6890-6895 https://doi.org/10.1073/pnas.96.12.6890
  18. Li, W., H. Mischak, J. C. Yu, L. M. Wang, J. F. Mushinski, M. A. Heidaran and J. H. Pierce. 1994. Tyrosine phosphorylation of protein kinase C-d in response to its activation. J. Biol. Chem. 269, 2349-2352
  19. Liu, F. and J. Chernoff. 1997. Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochem. J. 327 (Pt 1), 139-145 https://doi.org/10.1042/bj3270139
  20. McInnes, C. and B. D. Sykes. 1997. Growth factor receptors: structure, mechanism and drug discovery. Biopolymers 43, 339-366 https://doi.org/10.1002/(SICI)1097-0282(1997)43:5<339::AID-BIP2>3.0.CO;2-W
  21. Nguyen, K. T., W. J. Wang, J. L. Chan and L. H. Wang. 2000. Differential requirements of the MAP kinase and PT3 kinase signaling pathways in Src- versus insulin and IGF-1 receptors-induced growth and transformation of rat intestinal epithelial cells. Oncogene 19, 5385-5397 https://doi.org/10.1038/sj.onc.1203911
  22. Nishibe, S., M. J. Wahl, S. G. Rhee and G. Carpenter. 1989. Tyrosine phosphorylation of phospholipase C-II in vitro by the epidermal growth factor receptor. J. Biol. Chem. 264, 10335-10338
  23. Rotin, D., B. Margolis, M. Mohammadi, R. J. Daly, G. Daum, N. Li, E. H. Fischer, W. H. Burgess, A. Ullrich and J. Schlessinger. 1992. SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C-g. Embo J. 11, 559-567
  24. Sarbassov, D. D., D. A. Guertin, S. M. Ali and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/ PKB by the rictor-mTOR complex. Science 307, 1098-1101 https://doi.org/10.1126/science.1106148
  25. Toker, A. and A. C. Newton. 2000. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J. Biol. Chem. 275, 8271-8274 https://doi.org/10.1074/jbc.275.12.8271
  26. Wong, B. R., D. Besser, N. Kim, J. R. Arron, M. Vologodskaia, H. Hanafusa and Y. Choi. 1999. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041-1049 https://doi.org/10.1016/S1097-2765(00)80232-4
  27. Xing, L., A. M. Venegas, A. Chen, L. Garrett-Beal, B. F. Boyce, H. E. Varmus and P. L. Schwartzberg. 2001. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev. 15, 241-253 https://doi.org/10.1101/gad.840301
  28. Yang, J., P. Cron, V. Thompson, V. M. Good, D. Hess, B. A. Hemmings and D. Barford. 2002. Molecular mechanism for the regulation of protein kinase B/ Akt by hydrophobic motif phosphorylation. Mol. Cell 9, 1227-1240 https://doi.org/10.1016/S1097-2765(02)00550-6
  29. Yang, Z. Z., O. Tschopp, A. Baudry, B. Dummler, D. Hynx and B. A. Hemmings. 2004. Physiological functions of protein kinase B/ Akt. Biochem. Soc. Trans. 32, 350-354 https://doi.org/10.1042/BST0320350