폐암 세포주에서 5-Aminolevulinic Acid에 의해 유도된 Protoporphyrin IX의 형광 진단을 위한 In Vitro 연구

In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced from 5-Aminolevulinic Acid in Incubated Lung Cancer Cells

  • 김명화 (계명대학교 화학과) ;
  • 김현정 (계명대학교 전통미생물자원개발 및 산업화연구센터) ;
  • 이인선 (계명대학교 전통미생물자원개발 및 산업화연구센터) ;
  • 김경찬 (계명대학교 디지털물리학과) ;
  • 이창섭 (계명대학교 화학과)
  • Kim, Myung-Hwa (Department of Chemistry, Keimyung University) ;
  • Kim, Hyun-Jeong (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Kim, Kyung-Chan (Department of Digital Physics, Keimyung University) ;
  • Lee, Chang-Seop (Department of Chemistry, Keimyung University)
  • 발행 : 2007.04.30

초록

형광을 이용한 암 진단을 위해 배양된 정상 폐세포 및 폐암 세포주에 광민감제인 5-ALA를 투여하고 세포 내 외에서 생성된 protoporphyrin IX (PpIX)의 형광을 측정하여 5-ALA 투여의 최적 농도를 조사하였다. 정상 폐세포주 (Hel299) 및 폐암 세포주 (A549, NCI-H460)에 5-ALA를 $0\sim800{\mu}g/mL$ 농도별로 투여하여 24시간 동안 배양한 다음 MTT assay로 세포증식 저해율 및 이때 생성되는 PpIX의 양을 형광의 강도로 측정하였다. 그 결과 Hel299 및 A549에서는 5-ALA의 처리농도가 증가할수록 세포 증식의 저해율이 증가하였으나 NCI-H460에서는 세포 증식이 저해되지 않았다. 그리고 폐암세포인 A549와 NCI-H460에 대한 5-ALA의 최적농도는 $100{\mu}g/mL$이며, 이때의 형광 (emission) 스펙트럼은 여기 파장이 410 nm일 때 세포 외에서는 615.8 nm와 660.8 nm, 616.7 nm와 660.2 nm, 세포 내에서는 603.2 nm와 661.4 nm, 603.5 nm와 661.4 nm에서 각각 형광 봉우리가 관찰되었다. 또한 PpIX를 형광 강도로 측정하면, PpIX는 정상세포에서는 낮은 농도로 축적이 되는 반면에 암세포에서 높은 농도로 축적되었으며, 세포 외보다는 세포 내에서 더 높은 농도로 축적됨을 알 수 있었다.

This study investigates the optimal method of administrating 5-aminolevulinic acid (5-ALA) in the context of fluorescence detection by analyzing protoporphyrin IX (PpIX) fluorescence in the cultured normal and cancer cells. 5-ALA was injected as a photosensitizer to the lung cancer cells (A549, NCI-H460) and normal lung cells (HeI299). Hel299, A549, and NCI-H460 cells were incubated with various concentrations of 5-ALA ($0\sim800{\mu}g/mL$). The accumulation of PpIX induced by 5-ALA was observed in A549, NCI-H460 and Hel299 cells. The cell viability was estimated by means of the MTT assay. Formation of PpIX was measured by fluorescence spectroscopy. Especially, formation of PpIX in cancer cells was higher than normal cells. This study suggests that the difference of PpIX induced in normal and cancer cells treated with 5-ALA may use by means of fluorescence diagnosis for cancer.

키워드

참고문헌

  1. Gallegos, E. R., I. D. Rodriguez, L. A. M. Guzman, and A. J. P. Zapata (1999), In Vitro Study of Biosynthesis of Protoporphyrin IX Induced By ${\delta}-Aminolevulinic$ Acid in Normal and Cancerous Cells of the Human Cervix, Archives of Medical Research 30, 163-170 https://doi.org/10.1016/S0188-0128(99)00013-5
  2. Myung-Hwa Kim, Hyun-Jeoug Kim, In-Seon Lee, Kyung-Chan Kim, and Chang-Seop Lee (2006), In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced 5-Alninolevulinic Acid in Cancerous and Normal Cells, Korean J. Biotechnol. Bioeng. 21(3), 171-174
  3. Kelty C. J., N. J. Brown, M. W. Reed, and R. Ackroyd (2002), The usc of 5-aminolevulinic acid as a photosensitiser in photodynamic therapy and photodianosis, Photocheme. Photobiol. Sci. 1, 158-168 https://doi.org/10.1039/b201027p
  4. Dietze, A. and B. Kristian (2005), ALA-induced porphyrin formation and fluorescence in synovitis tissue In-vitro and in vivo studies, Photodiagnosis and Photodynamic Therapy 2, 299-307 https://doi.org/10.1016/S1572-1000(05)00107-9
  5. Ji-Sun Kim, Phil-Sang Chung, Sang-Joon Lee, Chung-Hun Oh, Sang-Yong Chung, Ji-Yeon Park, and Young-Saeng Kim (2005), The Photodynamic Therapy using 5-Aminolevulinic Acid(5-ALA) : The Study of the Anti-Tumor Effect on in vitro and in vivo Experiments, Korean J. Otolaryngol. 48, 234-40
  6. Uehlinger P., M. Zellweger, G. Wagnieres, L. J. Jeanneret, H. Bergh, and N. Lange (2000), 5-Aminolevulinli acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells, J. Photochem. Photobiol. B: Biol. 54, 72-80 https://doi.org/10.1016/S1011-1344(99)00159-1
  7. Kennedy, J. C. and R. H. Pottier (1992), Endogenous protoporphyrin IX, a clinical useful photosensitizer for photodynamic therapy, Photochem. Photobiol. B 14, 275-92 https://doi.org/10.1016/1011-1344(92)85108-7
  8. Krammer, B. and K. Uberrigler (1996), In vitro investigation of ALA-induced protoporphyrin IX, Journal of Photochemistry and Photobiology B: Biology 36, 121-126 https://doi.org/10.1016/S1011-1344(96)07358-7
  9. Wyld, L., J. L. Burn, J. L. Reed, and N. J. Brown (1997), Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX, British Journal of Cancer 76, 705-712 https://doi.org/10.1038/bjc.1997.450
  10. Liwei, M., S. Bagdonas, and J. Moan (2001), The photosensitizing effect of the photoproduct of protoporphyrin IX, Journal of Photochemistry and Photobiology B: Biology 60, 108-113 https://doi.org/10.1016/S1011-1344(01)00133-6
  11. Ohgari Y., Y. Nakayasu, S. Kitajima, M. Sawamoto, H. Mori, O. Shimokawa, H. Matsui and S. Taketani (2005), Mechanisms involves in ${\delta}-aminolevulinic$ acid(ALA)-induced photosensitiyity of tumor cells: Relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin, Biochemical Pharmacology 71, 42-49 https://doi.org/10.1016/j.bcp.2005.10.019
  12. Uzdensky A. B., A. Juzeniene, E. Kolpakova, G. O. Hjortland, P. Juzenas and J. Moan (2004), Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a subtratum, Biochemical and Biophysical Research Communications 322, 452-457 https://doi.org/10.1016/j.bbrc.2004.07.132
  13. Baumgartner, R., R. M. Huber, H. Schulz, H. Stepp, K. Rick, F. Gamarra, A. Leberig, and C. Roth (1996), Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer, Journal of Photochemistry and Photobiology B: Biology 36, 169-174 https://doi.org/10.1016/S1011-1344(96)07365-4
  14. Ogaswara T., N. Miyoshi, M. Fukuda, T. Yamada, T. Ogawa, H. Maegawa, Y. Kitagawa and K. Sano (2003), Pluorescent analysis of 5-arninolevulinic acid-induced protoporphyrin IX in mouse transplanted tumor tissues, International Congress Series. 1248, 405-408
  15. Leunig A., M. Mehlmann, C. Betz, H. Stepp, S. Arbogast, G. Grevers. and R. Baumgarter (2001), Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies, Journal of Phoiochemisiy and Photobiology B: Biology 60, 44-49 https://doi.org/10.1016/S1011-1344(01)00117-8
  16. Sharwani A., W. Jerjes, V. Salih, A. J. MacRobert, M. E. Maaytah, H. S. M. Khalil, and C. Hopper (2006), Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluoresence in detecting oral premalignancy, Journal of Photochemistry and Photobiology B: Biology 83, 27-33 https://doi.org/10.1016/j.jphotobiol.2005.11.007
  17. Youn-Seup Kim, Jae-Seuk Park, Young-Koo Jee and Kye-Young Lee (2004), Photodynamic Therapy induced Cell Death using 5-ALA and 632nm Diode Laser in A549 Lung Caucer Cells, Tuberculosis and Respiratory Diseases 56(2), 178-186 https://doi.org/10.4046/trd.2004.56.2.178
  18. Gamarra F., P. Lingk, A. Marmarova, M. Edelmann, H. Hautmann, H. Stepp, R. Baumgartner, and R. M. Huber (2004), 5-Aminolevulinic acid fluorescence in bronchial tumours : dependency on the patterns of tumour invasion, Journal of Photochemistry and Photobiology B : Biology 73, 35-42 https://doi.org/10.1016/j.jphotobiol.2003.09.009
  19. Ninomiya, Y., Y. Itoh, S. Tajima, and A. Ishibashi (2001), In vitro and In vivo expression of protoporphyrin IX induced by lipophilic 5-amlnolevulinic acid derivatives, Journal of Dermatological Science 27, 114-120 https://doi.org/10.1016/S0923-1811(01)00123-2
  20. Green L. M., J. L. Reade, and C. F. Ware (1984), Rapid colorimetric assay for cell viability Application to the quantitation of cytotoxic and growth inhibitory Iymphokines, J. of Immunological Methods 70, 257-263 https://doi.org/10.1016/0022-1759(84)90190-X