Bacterial Degradation of Monoethanolamine

생물학적 방법에 의한 Monoethanolamine의 분해 연구

  • Hyun, Jun-Taek (Department of Energy and Environmental Engineering Soonchunhyang University) ;
  • Rhee, In-Hyoung (Department of Energy and Environmental Engineering Soonchunhyang University) ;
  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering, Inst. of Marine Industry, Gyeonsang National University) ;
  • Kim, Dong-Jin (Department of Environmental & Bioengineering, Hallym University) ;
  • Cho, Dae-Chul (Department of Energy and Environmental Engineering Soonchunhyang University)
  • 현준택 (순천향대학교 에너지환경공학과) ;
  • 이인형 (순천향대학교 에너지환경공학과) ;
  • 권성현 (경상대학교 해양환경공학과) ;
  • 김동진 (한림대학교 환경생명공학과) ;
  • 조대철 (순천향대학교 에너지환경공학과)
  • Published : 2007.06.30

Abstract

This study is to investigate the biological degradation and the characteristics of MEA, a pH regulator to be put in the cooling water circulation system for power plants, loading to elevate concentrations of COD and N when eluted into the water environment. MEA, $NH_4^+$ and CODcr were monitored in flask cultures and in a batch aerator. MEA was found to be biologically degradable, producing substantial amount of ammonia (max. 78.1%) in a form of $NH_4^+$ and other carboneous intermediates. The degradation reaction rates were similar one another over all MEA concentrations tested as the activated sludge (microbial consortium) was acclimated to MEA with the gradual and stepwise increase in MEA input into the batch aerator. Also, MLVSS kept increasing with increasing MEA input. The COD-based degradation reaction order was determined to be 1.

본 연구는 수계에서의 생물학적 고찰이 거의 없었던 MEA 단독 물질을 전형적 활성슬러지와 Pseudomonas계 균주를 이용하여 분해특성을 분석한 것이다. 잠정적 결론으로서 첫째, MEA는 수계 유입 시 COD 및 $NH_4^+$ 농도의 상당한 증가를 유발하여 MEA는 $NH_4^+$로 78.1% 이상 전환되었다. 둘째, 공기 공급이 조절된 회분식 반응기에서 MEA 분해속도는 1000 mg/L에서 최대 19.23 mg/L/h, 고농도인 5000 mg/L에서 17.55 mg/L/h로서 미생물 순응이 담보되는 경우 큰 차이를 보이지 않았다. 셋째, 순차적 순응단계를 거쳐 MLVSS가 상대적으로 작은 조건 (최대 820 mg/L)에서도 약 3개월간 안정적 장기 운전이 가능하였고, 최대 분해율은 약 95%였다. 넷째, $COD_{cr}$를 기초로 한 반응속도론 분석에 의하면 MEA 생분해는 1차 반응에 부합하였다. 향후 MEA의 생물학적 공법을 확립하기 위해 활성슬러지 시스템의 미생물 효소분석을 통해 순응단계를 최적화하는 연구를 수행할 계획이다.

Keywords

References

  1. Park, K. K. and S. W. Yoon (2000), Characteristics of ETA for pH control and full scale test at Kori unit 1, J. Corras. Sci. Soc. of Kor. 29(6), 325-335
  2. Jung, H. J. (2006), A study of physlcochemical and ion exchange characteristics of ETA, MS. Thesis, Department of Energy and Environmental Engineering, Soonchunhyang University, Asan
  3. Chi, S. and G. T. Rochelle (2002), Oxdarive degradation of Monoethanolamine, Ind Eng. Chem. Rse. 41(17), 4178-4186 https://doi.org/10.1021/ie010697c
  4. Goff, G. S. and G. T. Rochelle (2004), Monoethanolamine degradation: $O_2$ mass transfer effects under $CO_2$ capture conditions, Ind. Eng. Chem, Res. 43, 6400-6408 https://doi.org/10.1021/ie0400245
  5. Liao, C. H. and M. H. Li (2002), Kinetics of absorption of carbon dioxide into aqueous solutions of rnonocthanolamine+N-methyldiethanolamine, Chem. Eng. Sci. 57(21), 4569-4582 https://doi.org/10.1016/S0009-2509(02)00395-0
  6. Mandel, B. P. and S. S. Bandyopadhyay (2006), Absorption of carbon dioxide into aqueous blends of z-amino-z-methy-1-propanol and monoethanolamine, Chem. Eng. Sci. 61, 5440-5447 https://doi.org/10.1016/j.ces.2006.04.002
  7. west, R. J. and S. J. Gonsior (1996), Biodegradation of triethanolamine, Environ. Toxicol. Chem. Res. 15(4), 472-480 https://doi.org/10.1897/1551-5028(1996)015<0472:BOT>2.3.CO;2
  8. Speranza, G., C. F. Morelli, P. Cairoli, B. Muller, and B. schink (2006), Mechanism of anaerobic degradation of triethanolamine by a homoacetogenlc bacterium, Biochem, Biophys. Res. Commun, 349(2). 480-484 https://doi.org/10.1016/j.bbrc.2006.08.001
  9. Wang, L. S. Barrington, and J. W. Kim (2007), Biodegradation of pentyl amine aniline from petrochemical wastewater, J. Environ. Manag, 83, 191-197 https://doi.org/10.1016/j.jenvman.2006.02.009
  10. Mrklas, O., A. Chu, and S. D. R. Lunn (2003), Determination of ethanolamine, ethylene glycol and triethylene glycol by ion chromatography for laboratory and field biodegradation studies, J. Environ. Monit. 5, 336-340 https://doi.org/10.1039/b210572a
  11. Mrklas, O., A. Chu, S. D. R. Lnnn, and L. R. Bentley (2004), Biodegradation of monoethanolamine, ethylene glycol and triethylene glycol in laboratory bioreactors, Water, Air, and Soil Pollut. 159, 249-263 https://doi.org/10.1023/B:WATE.0000049178.93865.d4
  12. Yang, B. S. (2002), Water and wastewater treatment, 2rd ed., pp321-389, Docng-Hwa Pub., Seoul
  13. Nuclear Thermal-Hydraulics Engineering Laboratory (2002), Demineralizer operation otimization for removal efficiency improvement of nuclides in Npp system water, Final Report, 330-333