DOI QR코드

DOI QR Code

청각신경 시냅스의 적응 효과를 이용한 인공와우 어음처리 알고리즘의 개선에 대한 시뮬레이션 연구

A Simulation Study on Improvements of Speech Processing Strategy of Cochlear Implants Using Adaptation Effect of Inner Hair Cell and Auditory Nerve Synapse

  • 김진호 (연세대학교 보건과학대학 의공학과) ;
  • 김경환 (연세대학교 보건과학대학 의공학과)
  • Kim, Jin-Ho (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Kim, Kyung-Hwan (Department of Biomedical Engineering, College of Health Science, Yonsei University)
  • 발행 : 2007.04.30

초록

A novel envelope extraction algorithm for speech processor of cochlear implants, called adaptation algorithm, was developed which is based on a adaptation effect of the inner hair cell(IHC)/auditory nerve(AN) synapse. We achieved acoustic simulation and hearing experiments with 12 normal hearing persons to compare this adaptation algorithm with existent standard envelope extraction method. The results shows that speech processing strategy using adaptation algorithm showed significant improvements in speech recognition rate under most channel/noise condition, compared to conventional strategy We verified that the proposed adaptation algorithm may yield better speech perception under considerable amount of noise, compared to the conventional speech processing strategy.

키워드

참고문헌

  1. B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, W. M. Rabinowitz, 'Better speech recognition with cochlear implants,' Nature, vol. 352, pp. 236-238, 1991 https://doi.org/10.1038/352236a0
  2. L. Deng, C. D. Geisler, 'A composite auditory model for processing speech sounds,' J. Acoust. Soc. Am., vol. 82, pp. 2001-2012, 1987 https://doi.org/10.1121/1.395644
  3. B. Delgutte, N. Y. S. Kiang, 'Speech coding in the auditory nerve:IV. Sounds with consonant-like dynamic characteristics,' J. Acoust. Soc. Am., vol. 75, pp. 897-907, 1984 https://doi.org/10.1121/1.390599
  4. B. S. Wilson, R. Schatzer, E. A. Lopez-Poveda, X. Sun, D. T. Lawson, R. D. Wolford, 'Two new directions in speech processor design for cochlear implants,' Ear Hear., vol. 26, pp. 73S-81S, 2005 https://doi.org/10.1097/00003446-200508001-00009
  5. J. R. Cohen, 'Application of an auditory model to speech recognition,' J Acoust. Soc. Am., vol. 85, pp. 2623-2629, 1989 https://doi.org/10.1121/1.397756
  6. R. L. Smith, 'Adaptation, saturation, and physiological masking it: single auditory-nerve fibers,' J. Acoust. Soc. Am., vol. 65, pp. 166-178, 1979 https://doi.org/10.1121/1.382260
  7. J. Tchorz, B. Kollmeier, 'A model of auditory perception as front end for automatic speech recognition,' J. Acoust. Soc. Am., vol. 106,pp.2040-2050, 1999 https://doi.org/10.1121/1.427950
  8. R. Meddis, L. P. O'Mard, E. A. Lopez-Poveda, 'A computational algorithm for computing nonlinear auditory frequency selectivity,' J. Acoust. Soc. Am., vol. 109, pp. 2852-2861, 2001 https://doi.org/10.1121/1.1370357
  9. J.H. Kim, K. H. Kim, Improvement of cochlear implant speech processor based on nonlinear time-varying filterbank model of biological cochlea, The 33rd annual fall meeting of KOSOMBE, pp.93, 2005
  10. M. F. Dorman, P. C. Loizou, D. Rainey, 'Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs,' J. Acoust. Soc. Am., vol. 102, pp. 2403-2411, 1997 https://doi.org/10.1121/1.419603
  11. R. V. Shannon, F. G. Zeng, V. Kamath, J. Wygonski, M. Ekelid, 'Speech recognition with primarily temporal cues,' Science, vol. 270,pp.303-304, 1995 https://doi.org/10.1126/science.270.5234.303
  12. P. C. Loizou, M. Dorman, Z. Tu, 'On the number of channels needed to understand speech,' J. Acoust. Soc. Am., vol. 106, pp. 2097-2103, 1999 https://doi.org/10.1121/1.427954
  13. L.-P. Yang, Q.-J Fu, 'Spectral subtraction-based speech enhancement for cochlear implant patients in background noise,' J. Acoust. Soc. Am., vol. 117, pp. 1001-1004, 2005 https://doi.org/10.1121/1.1852873