DOI QR코드

DOI QR Code

고등학교 화학II 수업에 적용한 Small-Scale Chemistry 실험의 효과

The Effects of Small-Scale Chemistry Laboratoty Programs in High School Chemistry II Class

  • 발행 : 2007.04.30

초록

본 연구의 목적은 고등학교 화학II 교과에서 Small Scale Chemistry(SSC)를 적용한 수업이 학생들의 과학 탐구 능력과 과학관련 태도에 미치는 효과를 알아보는데 있다. 연구 대상은 인문계 고등학교 3학년 학생 112명이며, 실험 집단과 비교 집단으로 나누었다. 화학II 교과서의 기존 실험을 대치할 수 있는 SSC 실험을 7개 선정하여 이를 실험 집단에 적용하고, 비교 집단에는 교과서에 제시된 기존 실험을 적용하였다. 연구 결과 두 집단 간에 과학 탐구 능력의 향상에는 유의미한 차이가 있었으나, 과학관련 태도의 향상에는 유의미한 차이가 없었다. 세부 분석 결과 과학 탐구 능력의 차이는 기초 탐구 능력의 차이에 의한 것으로 나타났다. 실험 집단 학생들은 SSC 실험이 기존 실험에 비해 많은 장점(예를 들면, 개별 실험, 실험과 이론의 동시 학습, 짧은 실험 시간, 안전성, 친환경성 등)이 있음을 인식하고 있었다. 이러한 결과는 고등학교 화학 과목에 SSC 실험을 적용할 가치가 있음을 나타내며 현 교과서의 기존 실험을 대치할 수 있는 다양한 SSC 실험을 개발하여 보급할 필요가 있음을 시사한다.

The purpose of this study is to examine the effects of small-scale chemistry(SSC) laboratory activities implemented in high school chemistry II classes on the students' inquiry process skills and science-related attitudes. For this study, 112 students in the 12th grade were chosen and divided into an experimental and a control group. Seven SSC lab programs that can replace the traditional experiments in chemistry II textbooks were selected and administered to the experimental group while the traditional textbook experiments were administered to the control group. The results showed that there was a significant difference in the enhancement of inquiry process skills between the two groups while no significant difference was found in science-related attitudes. Further analysis showed that the difference in the inquiry process skills came from the basic inquiry process skills. The experimental group students thought that the SSC experiments have many advantages compared to the traditional experiments, e.g., individual work, learning lab and theory in parallel, short experiment time, safety, environmental aspects, etc. These results suggest that the SSC lab programs are valuable in high school chemistry classes and developing and distributing various SSC lab programs is needed to replace the traditional experiments in the current textbooks.

키워드

참고문헌

  1. 강대호, 정수군, 구인선 (2003). 제 7차 과학교육과정 의 탐구 요소들에 의한 화학(II) 교과서의 탐구 영역 분 석. 대한화학회지, 47(6), 645-658
  2. 권재술, 김범기 (1994). 초.중학생들의 과학탐구능력 측정도구의 개발. 한국과학교육학회지, 14(3), 251-264
  3. 김현경 (2003). Small Scale Chemistry란 무엇인가? 화학교육, 30(1), 106-113
  4. 김현경, 정영규 (역) (2004). Small-scale chemistry 캠트렉 서울: 자유아카데미. (원저: Thompson. S. (1990) CHEMIREK Small-scale experiments for general chemistry.Englewood Cliffs, NJ: Prentice Hall.)
  5. 김현경, 최병순 (2005). Small Scale Chemistry에 대 한 과학 교사들의 인식. 대한화학회지, 49(2), 208-214
  6. 박종윤 외 21 인 (역) (2005). Small-scale chemistry 중등 화학 실험서 서울. 자유아카데미. [원전: Waterman, E. L., & Thompson, S. (1995). Small-scale chemistry laboratory manual. Menlo park, CA: Addison-Wesley.]
  7. 심병주 (2005). 물질지도에서 Small-Scale Chemistry (SSC) 를 적용한 초등과학수업의 효과. 서울교육대학교 교육대학원 석사 학위 논문
  8. 여성희, 김희령, 김미경 (2003). 제 7차 교육과정에 따른 초등학교 5학년 과학교과서의 탐구 과정과 학생들 의 과학 탐구 능력 실태 분석. 한국생물교육학회지, 31 (3), 214-223
  9. 유미현, 윤희숙, 홍훈기 (2001 ) . Small--Scale Chemistry (SSC)를 적용한 고등학교 과학 수업의 효과. 대한화학회지, 50(3), 256-262
  10. 이경훈 (1998). 고등학생의 과학에 관련된 태도와 과학 성취도와의 관계. 한국과학교육학회지, 18(3), 415 -425
  11. 이미경, 김경희 (2004). 과학에 대한 태도와 과학 성취도의 관계. 한국과학교육학회지, 24(2), 399-407
  12. 이미경, 정은영 (2004). 학교 과학 교육에서 과학에 대한 태도에 영향을 미치는 요인 조사. 한국과학교육학 회지, 24(5), 946-958
  13. 허명 (1993). 초중고 학생의 과학 및 과학교과에 대한 태도 조사 연구. 한국과학교육학회지, 13(3), 334 -340
  14. Aktoudianakis, E., & Dicks, A. P. (2006). Convenient microscale synthesis of a coumarin laser dye analog. Journal of Chemical Education, 83(2), 287-289 https://doi.org/10.1021/ed083p287
  15. Bradley, J. D., Durbach, S., Bell, B., Mungarulire, J., & Kimel, H (1998). Hands-on practical chemistry for all - Why and how? Journal of Chemical Education, 75(11), 1406-1409 https://doi.org/10.1021/ed075p1406
  16. Choi, M. M. F. (2002). Microscale chemistry in a plastic Petri dish: Preparation and chemical properties of chlorine gas. Journal of Chemical Education, 79(8), 992 -993 https://doi.org/10.1021/ed079p992
  17. De Muro, J. C, Margarian, H, Mkhikian, A, No, K K, & Peterson, A. W. (1999). An inexpensive microscale method for measuring vapor pressure, associated thermodynamic variables, and molecular weight. Journal of Chemical Education, 76(8), 1113-1116 https://doi.org/10.1021/ed076p1113
  18. Egolf, L. M, & Keiser, J. T. (1993). Photon-initiated hydrogen-chlorine reaction. A student experiment at the micrcscale level. Journal of Chemical Education, 70(8), A208-A209 https://doi.org/10.1021/ed070pA208
  19. Fraser, B. J. (1981). Test of science-related attitudes. Victoria, Australia: Australian Council for Educational Research
  20. Herrera, A, & Almy, J. (1998). Notes on converting to microscale, Journal of Chemical Education, 75(1), 83-84 https://doi.org/10.1021/ed075p83
  21. Mocellin, E., & Goscinska, T. (1998). Mxlified carbon electrodes for microseale electrochemistry. Journal of Chemical Education, 75(6), 771-772 https://doi.org/10.1021/ed075p771
  22. Singh, M. M, McGowan, C. B., Szafran, Z., & Pike, R. M (2000)). A comparative study of microscale and standard burets. Journal of Chemical Education, 77(5), 625-626 https://doi.org/10.1021/ed077p625
  23. Singh, M. M, Szafran, Z., & Pike, R. M (1999). Microscale chemistry and green chemistry: Complementary pedagogies. Journal of Chemical Education, 76(12), 1684 -1686 https://doi.org/10.1021/ed076p1684
  24. Waterman, E. L., & Thompson, S. (1989). Microscale - the way of the future. A small solution to some big problems. The Science Teacher, 56(8), 28-31