실험 결과 해석 과정에서 사용한 체계적 비유가 고등학생들의 효소 개념 변화에 미친 영향

The Influence of the Systematic Analogies Used at the Interpretation of Experimental Results on High School Students' Conceptual Change of Enzymes

  • 발행 : 2007.10.30

초록

세포 내의 화학 반응은 매우 복잡하고 추상적이어서 학생들이 이해하는 데 어려움을 갖고 있다. 본 연구에서는 이러한 세포 내 화학 반응에서 중요한 역할을 하는 효소 작용에 대한 이해를 돕기 위해 실험 결과 해석 과정에서 체계적 비유를 사용한 수업을 계획하고 10학년 학생들을 대상으로 이 수업이 효소 개념 이해에 미친 효과와 그 과정에서 체계적 비유가 어떤 역할을 하였는지 분석하였다. 실험반 학생들의 효소 개념 이해 정도가 대조반에 비해 유의수준 0.05에서 통계적으로 유의미한 차이를 보여 체계적 비유가 효소 개념 이해에 효과적임을 나타내었다. 효소 작용 개념을 내용별로 세분하여 살펴보면 특히 '온도 pH에 따른 효소 구조 변화와 반응 속도', '효소의 계속적 무작위적 작용'과 같이 학생들이 이해하기 어려워하는 평형 범주의 속성을 지닌 개념에 대한 이해에서 체계적 비유의 효과가 크게 나타났다. 이 과정에서 체계적 비유는 학생들의 개념 지위를 향상시키는데 긍정적인 역할을 하였다. 비유물의 가시화와 친숙성은 학생들의 효소 작용 개념에 대한 이해가능성을 높였으며, 효소 반응 실험에서 나타난 현상을 과학 개념과 연결짓는데 발판 역할을 함으로써 실험 결과를 과학 개념으로 일관성 있게 설명할 수 있게하여 개념 지위를 그럴듯함으로 향상시켰다. 또한 학생들에게 친숙한 비유는 학생들의 흥미를 유발시키고 어려운 과학 개념에 쉽게 다가갈 수 있도록 함으로써 정의적 측면에서도 매우 긍정적인 역할을 하였다.

Chemical reactions in cells are so complicated and abstract that students have difficulty in understanding them. In this study, classes with the application of systematic analogies used at the interpretation of experimental results were taught to 10th-grade students in order to help them to understand the concept of enzymes, which play an important role in chemical reactions in cells. Effects of the classes on their understanding of the concept of enzymes and the role of systematic analogies were analyzed. The gap of understanding between the test group and the control group was significant at 0.05, indicating that systematic analogies are effective for students' understanding of the concept of enzymes. Looking into the concept of enzymes by individual element, the effect of systematic analogies was shown to be large for equilibrium-like processes, such as the enzyme structure change caused by temperature and pH; and the continuous and random actions of enzymes, which students have difficulty in understanding. For these processes, systematic analogies played a positive role in improving their conceptual status. The visualizations and familiarity of analogs increased their intelligibility regarding the concept of enzyme. Also, the systematic analogies increases their plausibility by helping to connect phenomena, taking place in the enzyme reaction experiments, with scientific concepts as scaffold. Accordingly, it was possible to explain experimental results as scientific concepts in a consistent manner. In addition, analogies familiar to students played a positive role from the affective perspective by promoting students' interest and helping them to approach hard scientific concepts.

키워드

참고문헌

  1. 김미영, 김희백 (2006). 혈액 순환 요소별 학생들의 개념 분석: 횡단적 연구. 한국과학교육학회지, 26(6), 753-764
  2. 김희정, 조연순 (2001). 초등학생의 광합성 개념학습에서 TWA 비유 수업모형의 효과. 한국과학교육학회지, 21(2), 444-458
  3. 박강훈, 이선경, 장남기 (1992). 중등학교 학생들의 호흡에 과한 개념 조사. 한국생물교육학회지, 20(2), 115-132
  4. 이원경, 김희백 (2007a). 실험 해석 과정에서 체계적 비유 사용에 의한 중학교 영재반 학생의 효소 개념 변화. 한국과학교육학회지, 27(3), 212-224
  5. 이원경, 김희백 (2007b). 제7차 교육과정에 제시된 효소 개념 및 학생들의 효소 개념의 이해에 대한 횡단적 연구. 한국생물교육학회지, 35(3), 337-350
  6. 조희형 (1985). 고등학교 생물과정에 필요한 기본개념의 확인 및 결정. 한국과학교육학회지, 5(1), 11-17
  7. Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237-261 https://doi.org/10.1007/BF00118013
  8. Bryce, T., & MacMillan, K. (2005). Encouraging conceptual change: The use of bridging analogies in the teaching of action-reaction forces and the 'at rest' condition in physics. International Journal of Science Education, 27(6), 737-763 https://doi.org/10.1080/09500690500038132
  9. Chi, M. T. H., Slotta, J. D., & de Leeuw, N. A. (1994). From things to processes: A Theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27-43 https://doi.org/10.1016/0959-4752(94)90017-5
  10. Duit, R. (1991), On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672 https://doi.org/10.1002/sce.3730750606
  11. Friedler, Y., & Tamir, P. (1990). Life in science laboratory classroom at secondary level. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum, (pp. 337-354). London: Routledge
  12. Gunstone, R. F., & Champagne, A. B. (1990). Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum, (pp. 159-182). London: Routledge
  13. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381 https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  14. Hart, C., Mulhall, P., Berry, A., Lougharn, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655-675 https://doi.org/10.1002/1098-2736(200009)37:7<655::AID-TEA3>3.0.CO;2-E
  15. Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students' misconceptions of photosynthesis and respiration in plants using tow-tier multiple choice instrument. Journal of Biology Education, 21(3), 203-211 https://doi.org/10.1080/00219266.1987.9654897
  16. Hewson, P. W., & Hewson, M. G. A. B. (1992). The status of students' conceptions. In R. Duit, F. Goldberg, and H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies, (pp. 59-73). Kiel: IPN
  17. Hewson, P., & Lemberger, J. (2000). Status as the hallmark of conceptual learning. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education, (pp. 110-125). Buckingham, UK: Open University Press
  18. Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60(4), 549-571 https://doi.org/10.3102/00346543060004549
  19. Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71 (256), 33-40
  20. Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340 https://doi.org/10.3758/BF03197035
  21. Klopfer, L. E. (1990). Learning scientific inquiry in the school laboratory. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum, (pp. 95-118). London: Routledge
  22. Millar, R. (1998). Rhetoric and reality: What practical work in science education is really for. In J. Wellington (Ed.), Practical work in science: Which way now?, (pp, 16- 31). New York: Rutledge
  23. Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167-199 https://doi.org/10.3102/00346543063002167
  24. Thorley, N. R. (1990). 'The role of the conceptual change model in the interpretation of classroom interactions', unpublished doctoral dissertation. University of Wisconsin-Madison
  25. Tiberghien, A., Veillard, L., Le Marechal, J. F., Buty, C., & Millar, R. (2001). An analysis of lab work tasks used in science teaching at upper secondary school and university levels in several European countries. Science Education, 85(5), 483-508 https://doi.org/10.1002/sce.1020
  26. Treagust, D. F., Harrison, A. G., & Venville, G. T. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18(2), 213-229 https://doi.org/10.1080/0950069960180206
  27. Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Education, 35(9), 1031-1055
  28. Wallace, C. S., Tsoi, M. Y., Calkin, J., & Darley, M. (2003). Learning from inquiry-based laboratories in non-major biology: An interpretive study of the relationships among inquiry experience, epistemologies, and conceptual growth. Journal of Research in Science Teaching, 40(10), 986-1024 https://doi.org/10.1002/tea.10127
  29. Wellington, J. J. (1998). Practical work in science: time for a reappraisal. In J. J. Wellingtion (Ed.), Practical work in school science, (pp. 3-15). NY: Routledge
  30. Wittrock, M. C., & Alesandrini, K. (1990). Generation of summaries and analogies and analytic and holistic abilities. American Educational Research Journal, 27(3), 489-502 https://doi.org/10.3102/00028312027003489
  31. Yerrick, R. K., Doster, E., Nugent, J. S., Parke, H. M., & Crawley, F. E. (2003). Social interaction and the use of analogy: An analysis of preservice teacher's talk during physics inquiry lessons. Journal of Research in Science Teaching, 40(5), 443-463 https://doi.org/10.1002/tea.10084