DOI QR코드

DOI QR Code

Pseudomonas sp. LG2의 Ferulic acid esterase 및 Xylanase 유도와 부분적 특성

Partial Characterization and Induction of Ferulic Acid Esterase and Xylanase from Pseudomonas sp. LG2

  • 김용균 (부산대학교 생명환경화학과) ;
  • 이상몽 (부산대학교 생명환경화학과) ;
  • 박현철 (부산대학교 생명환경화학과) ;
  • 김근기 (부산대학교 생명환경화학과) ;
  • 손홍주 (부산대학교 생명환경화학과)
  • Kim, Yong-Gyun (Dept. of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Lee, Sang-Mong (Dept. of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Park, Hyun-Chul (Dept. of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Keun-Ki (Dept. of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Son, Hong-Joo (Dept. of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University)
  • 발행 : 2007.04.25

초록

리그닌 분해 세균인 Pseudomonas sp. LG2는 lignocellulose 기질을 분해하여 APPL 화합물을 생성하는 균주이다. 이 균주를 BSG(brewer's spent grain)가 함유된 배지에서 배양한 배양액에서 APPL 화합물을 확인하였다. 세포외 조효소들의 유도에 관한 여러 가지 탄소원의 영향을 조사한 결과 glucose 배지에서는 xylanase의 효소활성만 확인 되었고 xylose, arabinose에서 배양한 조효소에서는 FAE 및 xylanase의 효소활성이 없었다. Oat spelt xylan, HBSG I(hydrolyzed brewer's spent grain I), HBSG II(hydrolyzed brewer's spent grain II) 및 AFBSG(autoclaved fraction from brewer's spent grain)를 탄소원으로 배양한 조효소에서는 FAE 및 xylanase의 효소활성이 확인됐다. Pseudomonas sp. LG2를 oat spelt xylan, HBSG I, HBSG II 및 AFBSG를 탄소원으로 사용하여 14일 동안 배양하면서 배양기간에 따른 세포외 효소들의 FAE와 xylanase 활성을 조사하였다. Xylanase의 최고 활성은 xylan을 탄소원으로 6일간 배양 했을때 5.3 U/mg으로 가장 높았으며, FAE의 최고 활성은 AFBSG를 탄소원으로 배양했을 때 배양 8일째 15.4 mU/mg으로 가장 높았다. Oat spelt xylan, HBSG I, HBSG II 및 AFBSG를 탄소원으로 사용하여 배양한 배지에 분리된 ferulic acid가 확인되었다. 세포외 효소의 FAE 활성은 methyl ferulic acid, methyl caffeic acid, methyl p-coumaric acid에 대해 esterase의 활성을 보였으나, methyl sinapinic acid, methyl vanillic acid 및 methyl gallic acid에 대해서는 esterase의 활성이 없었다.

Lignin degrading bacterium Pseudomonas sp. LG2 was able to degrade lignin substrate to a lot of APPL compound. APPL compound was detected in culture supernatants from Pseudomonas sp. LG2 grown with BSC(brewer's spent grain). FAE(ferulic acid esterase) and xylanase are induced from Pseudomonas sp. LG2 in the presence of carbon sources such as oat spelt xylan, HBSG I, II(hydrolyzed brewer's spent grain I, II) and AFBSG(autoclaved fraction from brewer's spent grain). However, xylanase and FAE are not induced by growth of Pseudomonas sp. LG2 on xylose and arabinose. Pseudomonas sp. LG2 is grown on medium containing oat spelt xylan, HBSG I, II and AFBSG and the induction of FAE and xylanase activities of extracellular proteins determined during 14 days. Maximum level of xylanase activity(5.3 U/mg) found at 6 days in culture contained oat spelt xylan as carbon source, whereas maximum level of FAE activity(15.4 mU/mg) was found at 8 days in culture contained AFBSG as carbon source. Most ferulic acid was released in culture supernatants when Pseudomonas sp. LG2 grown on oat spelt xylan, HBSG I, II and AFBSG. FAE of extracellular enzymes was also specific activity on methyl ferulic acid, methyl caffeic acid and methyl p-coumaric acid respectively, but not methyl sinapinic acid, methyl vanillic acid and methyl gallic acid.

키워드

참고문헌

  1. Andreoni, V., S. Bernasconi and G. Bestetti. 1995. Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas fluorescens. Appl. Micro. Biotechnol. 42, 830-835 https://doi.org/10.1007/BF00191177
  2. Bartolome, B. and C. Gomez-Cordoves. 1999. Barley spent grain: Release of hydroxycinnamic acids by commercial enzyme preparations. J. Sci. Food Agric. 79, 435-439 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<435::AID-JSFA272>3.0.CO;2-S
  3. Bartolome, B., C. B. Faulds., P. A. Kroon, K. Waldron, H. Gilber, G. Hazlewood and G. Williamson. 1997. An Aspergillus niger esterase(ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp celluosa esterase (XylD) release a 5,5'-ferulic dehydrodimer(diferulic acid) from barley and wheat cell wall. Appl. Environ. Microbiol. 63, 208-212
  4. Bonnin, E., L. Saulnier, M. Brunel, Y. Gougy, L. Lesage-Meessen, M. Asther and J. F. Thibault. 2002. Release of ferulic acid from agroindustrial by-products by the cell degrading enzymes produced by Aspergillus niger I-1472. Enzyme Micro. Technol. 31, 1000-1005 https://doi.org/10.1016/S0141-0229(02)00236-3
  5. Bonnin, E. L., M. Asther and J. F. Thibault. 2000. A new process using Aspergillus niger and its enzymes for the production of vanillin and related compounds from agroindustrial by-products. AFINIDAD LVII. 489, 357-364
  6. Brezillon, C., P. A. Kroon, C. B. Faulds, G. M. Breet and G. Williamson. 1996. Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugar beet pulp. Appl. Biotechnol. 45, 371-376 https://doi.org/10.1007/s002530050698
  7. Castanares, A., S. I. McCrae and T. M. Wood. 1992. Purification and properties of a feruloyl/p-coumaryl esterase from the fungus Penicillium pinophilum. Enzyme Microb. Technol. 14, 875-884 https://doi.org/10.1016/0141-0229(92)90050-X
  8. Copa-patino, J .L., Y. G. Kim and P. Broda. 1993. Production and initial characterisation of the xylan-degrading system of Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 40, 69-76
  9. Donaghy, J. and A. M. Mckay. 1997. Purification and characterization of a feruloyl esterase from the fungus, Penicillium xepansum. J. Appl. Microbiol. 83(6),718-726 https://doi.org/10.1046/j.1365-2672.1997.00307.x
  10. Edeas, M., K. Khalfoun, Y. Laizi, L. Vergnes, S. Labidalle and A. Lindenbaum. 1995. Effects of the liposolubility of free radical scavengers on the production of antigen P24 from a HIV infected monocytic cell line. C R Seances Soc. Biol. Fil. 189, 367-73
  11. Faulds, C. B., M. C. Ralet, G. Williamson, G. P. Hazlewood and H. J. Gilbert. 1994. Specificity of an esterase(XYLD) from Pseudomonas fluorescens subsp. cellulosa. Biochim. Biophys. Acta 1243, 265-269
  12. Faulds, C. B., M. C. Ralet and G. Williamson. 1991. The purification and characterization of ferulic acid esterase from Sterptomyces olivochromogenes. J. Gen. Microbiol. 137, 2339-2345 https://doi.org/10.1099/00221287-137-10-2339
  13. Faulds, C. B. and G. Williamson. 1994. Purification and characterization of a ferulic acid esterase(FAE-III) from Aspergillus niger. Microbiology. 140, 779-787 https://doi.org/10.1099/00221287-140-4-779
  14. Faulds, C. B., G. Mandalari, R. LoCuroto, G. Bisignano and K. W. Waldron. 2004. Arabinoxylan and mono- and dimeric ferulic acid release from brewer's grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl. Microbiol. Biotechnol. 64, 644-650 https://doi.org/10.1007/s00253-003-1520-3
  15. Ferreira, P. F. N., C. Gutierrez, J. Soiveri and J. L. Copa-Patino. 1999. Streptomyces avermitilis CECT3339 produces a ferulic acid esterase able to release ferulic acid from sugar beet pulp soluble feruloylated oligosaccharides. J. Sci. Food Agri. 79, 440-442 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<440::AID-JSFA278>3.0.CO;2-C
  16. Kawavata, K., T. Yamamoto, A. Hara, M. Shiizu, Y. Yamada, K. Matsunaga and T. M. H. Tanaka. 2000. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 157, 15-21 https://doi.org/10.1016/S0304-3835(00)00461-4
  17. Kim, Y. G., H. J. Joo, K. K. Kim, H. S. Kim and Y. G. Lee. 2002. Isolation of a lignolytic bacterium for degradation and utilization of lignocellulose. K. J. of Life Science. 12(4), 392-398 https://doi.org/10.5352/JLS.2002.12.4.392
  18. Kroon, P. A., M. T. Gracia- Conesa, I. J. Fillingham, G. P. Hazlewood and G. Williamson. 1999. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J. Sci. Food Agric. 79, 428-434 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<428::AID-JSFA275>3.0.CO;2-J
  19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22, 680-685
  20. Mackenzie, C. R. and D. Bilous. 1988. Ferulic acid esterase activity from Schizophyllum commune. Appl. Environ, Microbiol. 54, 1170-1173
  21. Monties, B. 1988. Preparation of dioxane lignin fractions by acidolysis, pp 31-47. In Willis A. Wood and Scott T. Kellogg(eds.), Methods in Enzymology. 161, Academy press Inc., New York
  22. Murakami A., Y. Nakamura, K. Koshimizu, D. Takahashi, K. Matsumoto, K. Hagihara, H. Taniguchi and E. Nomura. 2002. FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion; comparison with ferulic acid. Cancer Letters 180, 121-129 https://doi.org/10.1016/S0304-3835(01)00858-8
  23. Peiqiang Y., D. David, J. J. Maenz, J. Racz and D. A. Christnsen. 2002. Release of ferulic acid from oat hols by Aspergillus Ferulic acid esterase and Trichoderma xylanase J. Agric. Food Chem. 50, 1625-1630 https://doi.org/10.1021/jf010984r
  24. Ralet, M. C., C. B. Faulds, G. Williamson and J. F. Thibault. 1994. Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydrate Research. 263, 257-269 https://doi.org/10.1016/0008-6215(94)00177-4
  25. Rosazza, J. P. N., Z, D. Huang, T. Volm and B. Rousseau. 1995. Review: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J. Ind. Microbiol. 15, 457-471 https://doi.org/10.1007/BF01570016
  26. Royer, J. C. and J. P. Nakas. 1990. Simple sensitive zymogram technique for detection of xylanase activity in polyacrylamide gel. Appl. Environ. Microbiol. 56(6), 1516-1517
  27. Saija, A., A. Tomaino, T. Drombetta, N. Uccella, T. Barbuzzi, D. Paolino, A. De Pasquale and F. Bonona. 2000. In vitro and vivo evaluation of caffeic and ferulic acid as topical photoprotective agents. International J. Pharmaceutics. 199, 39-47 https://doi.org/10.1016/S0378-5173(00)00358-6
  28. Saulnier, L., C. Marot, E. lgorriaga, E. Bonnin and J. F. Thibault. 2001. Thermal and enzymatic treatments for the release of free ferulic acid from maize bran. Carbohydr. Ploymer. 45, 269-275 https://doi.org/10.1016/S0144-8617(00)00259-9
  29. Suzuki, A., D. Kagawa, A. Fuji, R. Ochiai, I. Tokimitsu and I. Saito. 2002. Short-and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. American Journal of Hypertension. 15, 51-357
  30. Taniguchi, H., A. Hosoda, T. Tsuno, Y. Maruta and E. Nomura. 1999. Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Res. 19, 3757-3761
  31. Tenkanen, M., J. P. Schuseil and K. Poutanen. 1991. Production, purification and characterization of an esterase liberating phenolic acids from lignocellulose. J. Biotechnol. 18, 69-82 https://doi.org/10.1016/0168-1656(91)90236-O
  32. Vera V., T. A. Lozovaya, N. I. Corshkovva, V. Alexander and J. M. Widholm. 2000. Cell wall-bound phenolics in cells of maize(Zea mays, Gramineae) and buckwheat (Fagopyrum tataricum, Polygonaceae) with different plant regeneration abilities. Plant Science. 152, 79-85 https://doi.org/10.1016/S0168-9452(99)00225-3