DOI QR코드

DOI QR Code

Effect of intake of dried mackerel on fatty acid compositions in liver and nervous tissue

건조 고등어 섭취가 마우스의 간 및 신경조직의 지방산 조성에 미치는 영향

  • Choi, Hyung-Ju (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Kim, Kyung-Kun (Division of Marine System Engineering, Korea Maritime University) ;
  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 최형주 (한국해양대학교 해양환경생명과학부) ;
  • 김경근 (한국해양대학교 기관시스템공학부) ;
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Published : 2007.04.25

Abstract

The purpose of this investigation was to determine the effect of feeding dried mackerel as a means of increasing the intake of these n-3 polyunsaturated fatty acids on fatty acid compositions in liver and nervous tissue. Twenty male mice aged at 4 weeks were fed on the control (5% palm oil, control group) and 5% dried mackerel diets (mackerel group) for four weeks. In fatty acid compositions of liver and cortex, levels of total n-3 fatty acid, specially docosahexaenoic (22:6n-3, DHA) and eicosapentaenoic (20:5n-3, EPA) acids, were increased in the mackerel group compared to the control group, while docosapentaenoic acid (22:5n-6, DPAn-6) levels were decreased (p<0.05). In cerebellum and retina, levels of DHA were not significantly different between the control and mackerel groups, but levels of total n-6 fatty acids and arachidonic acid (20:4n-6, AA) were decreased in the mackerel group. These results indicated that intake of 5% dried mackerel increased levels of n-3 polyunsaturated fatty acids in cortex. Thus, we will investigate the relationship between brain function and cortex fatty acid compositions following intake of mackerel by assessing discrimination leaning ability.

본 연구에서는 n-3계 지방산이 풍부하게 함유된 고등어를 기존의 열풍건조기의 단점을 보완하고 높은 온도에서 손실되는 영양소를 막기 위해 저온진공건조기를 도입하여 건조시킨 후, 건조고등어의 섭취에 의한 간 및 신경조직에서의 지방산 조성 변화를 알아보고자 하였다. 간 지방산 조성의 경우, 고등어군의 총 n-6 지방산 함량은 두 군에서 유의적 차이는 없었으나 총 n-3 지방산의 함량은 고등어군에서 대조군보다 증가하였다. N-3 계열 지방산 중에서 특히 DHA의 함량은 대조군에 비해 229% 증가하였다(p<0.05). 대뇌 피질의 지방산 조성의 경우, 고등어군의 총 monounsaturated 지방산은 대조군에 비해 유의적으로 증가하였으나, 총 n-6 지방산의 함량은 감소하였다(p<0.05). 반면 총 n-3 지방산은 대조군에 비해 12%로 증가하였고 그 중에서 22:5n-3와 DHA의 함량은 고등어군에서 대조군보다 증가하였다(p<0.05). 소뇌의 지방산 조성의 경우, 총 지방산 함량과 총 n-6 지방산의 함량이 고등어군에서 대조군보다 감소하였고, 총 n-3 지방산의 함량은 두 군 간에 유의적 차이는 없었으나 n-3계 지방산중 22:5n-3의 함량은 200%로 증가하였다(p<0.05). 망막의 지방산 조성의 경우, 고등어군의 총 n-6 지방산의 함량은 대조군보다 감소하였으나, 총 n-3 지방산의 함량은 유의적 차이가 나타나지 않았다. 반면, n-3계 지방산 중에서 20:5n-3과 22:5n-3이 각각 200%, 67%로 증가하였다(p<0.05). 이상의 결과로부터 n-3 지방산을 많이 함유한 건조 고등어 식이는 간 및 신경조직의 총 n-3 지방산의 함량을 증가시켰고, 특히 간, 대뇌 피질에서의 DHA의 함량을 증가시켰다. 이상의 결과를 토대로 건조 고등어 섭취는 뇌의 DHA 함량을 증가시켰으므로 향후 공간 기억력 테스트를 행하여 고등어 섭취에 의한 뇌 기능 개선 효과와 뇌의 DHA 함량 증가와의 상호 연관성에 대하여 검토할 예정이다.

Keywords

References

  1. Adan, Y., K. Shibata, M. Sato, I. Ikeda and K. Imaizumi. 1999. Effects of docosahexaenoic and eicosapentaenoic acid on lipid metabolism, eicosanoid production, platelet aggregation and atherosclerosis in hypercholesterolemic rats. Biosci. Biotechnol. Biochem. 63, 111-119 https://doi.org/10.1271/bbb.63.111
  2. Bourre, J. M., M. Francois, A. Youyou, O. Dumont, M. Piciotti, G. Pascal and G. Durand. 1989. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electro-physiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880-1892 https://doi.org/10.1093/jn/119.12.1880
  3. Bourre, J. M., O. Dumont, C. Pascal and G. Durand. 1993. Dietary alpha-linolenic acid at 1.3 g/kg maintains maximal docosahexaenoic acid concentration in brain, heart and liver of adult rats. J. Nutr. 123, 1313-1319 https://doi.org/10.1093/jn/123.7.1313
  4. Bourre, J. M., O. S. Dumont, M. J. Piciotti, G. A. Pascal and G. A. Durand. 1992. Dietary alpha-linolenic acid deficiency in adult rats for 7 months does not alter brain docosahexaenoic acid content, in contrast to liver, heart and testes. Biochim. Biophys. Acta 1124, 119-122 https://doi.org/10.1016/0005-2760(92)90087-C
  5. Bronsgeest-Schoute, H. C., C. M. Van Gent, J. B. Luten and A. Ruiter. 1981. The effect of various intakes of ${\omega}3$ fatty acids on the blood lipid composition in healthy human subjects. Am. J. Clin. Nutr. 34, 1752-1757 https://doi.org/10.1093/ajcn/34.9.1752
  6. Choi, W. J., H. S. Kim, S. H. Kim, I. S. Su, G. J. Kim and S. Y. Chung. 1994. Effects of feeding the mixture of linseed and sunflower seed oil on the fatty acid composition in lipid of brain and heart in dietary hyperlipidemic rats. J. Kor. Soc. Food Nutr. 23, 205-211
  7. Connor, W. E. and S. L. Connor. 1982. The dietary treatment of hyperlipidemia. Rationale, technique and efficacy. Med. Clin. North Am. 66. 485-518 https://doi.org/10.1016/S0025-7125(16)31432-8
  8. Folch, J., M. Lees and G. H. Sloane Stanley. 1957. A Simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509
  9. Froyland, L., H. Vaagenes, D. K. Asiedu, A. Garras, O. Lie and R. K. Berge. 1996. Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs. Lipids 31, 169-178 https://doi.org/10.1007/BF02522617
  10. Green P. and E. Yavin. Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 15, 129-136
  11. Greiner, R. S., T. Moriguchi, B. M. Slotnick, A. Hutton and N. Salem. 2001. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol. Behav. 72, 379-385 https://doi.org/10.1016/S0031-9384(00)00437-6
  12. Hamosh, M. and N. Salem. 1998. Long-Chain Polyunsaturated Fatty Acids. Biol. Neonate 74, 106-120 https://doi.org/10.1159/000014017
  13. Harris, W. S., W. E. Connor and M. P. McMurry. 1983. The comparative reductions of the plasma lipids and lipoproteins by dietary polyunsaturated fats : Salmon oil versus vegetable oils. Metabolism. 32, 179-184 https://doi.org/10.1016/0026-0495(83)90226-3
  14. Harris, W. S., W. E. Connor, S. B. Inkeles and D. R. Illingworth. 1984. Dietary omega-3 fatty acids prevent carbohydrate-induced hypertriglyceridemia. Metabolism 33, 1016-1019 https://doi.org/10.1016/0026-0495(84)90230-0
  15. Herold, P. M. and J. E. Kinsella. 1986. Fish oil consumption and decreased risk of cardiovascular disease : a comparison of findings from animal and human feeding trials. Am. J. Clin. Nutr. 43, 566-598 https://doi.org/10.1093/ajcn/43.4.566
  16. Illingworth, D. R., W. S. Harris and W. E. Connor. 1984. Inhibition of low density lipoprotein synthesis by dietary omega-3 fatty acids in humans. Arteriosclerosis 4, 270-275 https://doi.org/10.1161/01.ATV.4.3.270
  17. Kestin, M., P. Clifton, G. B. Belling and P. J. Nestel. 1990. N-3 fatty acids of marine origin lower systolic blood pressure and triglycerides but raise LDL cholesterol compared with n-3 and n-6 fatty acids from plants. Am. J. Clin. Nutr. 51, 1028-1034 https://doi.org/10.1093/ajcn/51.6.1028
  18. Kim, H. S., S. H. Kim, G. J. Kim, W. J. Choi and S. Y. Chung. 1993. Effects of the feeding mixed oils with various level of n-3 and n-6 polyunsaturated fatty acid on the lipid components of liver, brain, testis and kidney in dietary hyperlipidemic rats. J. Kor. Soc. food Nutr. 22, 685-691
  19. Kim, K. K. 1999. Thermal characteristics of agriculture and fisheries by low temperature vacuum dryer. Proceedings of the KSME 1999 Spring Annual Meeting, pp 1-6
  20. Kim, Y. K. and K. J. Joo, 1994. EPA, DHA and tocopherols contents in fish oil products and fishes. J. Kor. Soc. Food Nutr. 23, 68-72
  21. Lim, S. Y. 2005. Effect of n-3 fatty acid deficiency on fatty acid composition in brain, retina and liver using a novel artificial rearing system. J. Kor. Soc. food Sci. Nutr. 34, 466-475 https://doi.org/10.3746/jkfn.2005.34.4.466
  22. Lim, S. Y., J. Hoshiba. T. Muriguchi and N. Salem. 2005. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pedia. Res. 58, 741-748 https://doi.org/10.1203/01.PDR.0000180547.46725.CC
  23. Moriguchi, T., R. S. Greiner and N. Salem. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75, 2563-2573 https://doi.org/10.1046/j.1471-4159.2000.0752563.x
  24. Morrison, W. R. and L. M. Smith. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600-608
  25. Nelson, G. J., P. C. Schmidt, G. L. Bartolini, D. S. Kelley and D. Kyle. 1997. The effect of dietary docosahexaenoic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids 32, 1137-1146 https://doi.org/10.1007/s11745-997-0146-5
  26. Neuringer, M. and W. E. Connor. 1986. N-3 fatty acids in the brain and retina ; Evidence for their essentiality. Nutr. Rev. 44, 285-294 https://doi.org/10.1111/j.1753-4887.1986.tb07660.x
  27. Newman, R. E., W. L. Bryden, E. Fleck, J. R. Ashes, W. A. Buttemer, L. H. Storlien and J. A. Downing. 2002. Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br. J. Nutr. 88, 11-18 https://doi.org/10.1079/BJN2002580
  28. Paul R., C. S. Ramesha, J. Ganguly. 1980. On the mechanism of hypocholesterolemic effects of polyunsaturated lipids. Adv. lipid Res. 17. 155-171 https://doi.org/10.1016/B978-0-12-024917-6.50010-0
  29. Reeves P. G., F. H. Nielsen and G. C. Fahey. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  30. Ruiter A., A. W. Jongbloed, C. M. van Gerit, L. H. Danse, S. H. Metz. 1978. The influence of dietary mackerel oil on the condition of organs and on blood lipid composition in the young growing pig. Am. J. Clin. Nutr. 31. 2159-2166 https://doi.org/10.1093/ajcn/31.12.2159
  31. Salem, N., B. Litman, H. Y. Kim and K. Gawrisch. 2001. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36, 945-959 https://doi.org/10.1007/s11745-001-0805-6
  32. Salem, N., M. Reyzer and J. Karanian. 1996. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids 31, 153-156 https://doi.org/10.1007/BF02522614
  33. Singh, G. and R. K. Chandra. 1988. Biochemical and cellular effects on fish and fish oils. Prog. Food Nutr. Sci. 12, 371-419
  34. Tinoco, J. 1982. Dietary requirements and functions of alpha-linolenic acid on animals. Prog. Lipid Res. 21, 1-45 https://doi.org/10.1016/0163-7827(82)90015-7
  35. Tinoco, J., R. Babcock, I. Hincenbergs, B. Medwadowski and P. Miljanich. 1978. Linolenic acid deficiency: Changes in fatty acid patterns in female and male rats raised on a linolenic acid-deficient diet for two generations. Lipids 13, 6-17 https://doi.org/10.1007/BF02533360
  36. Weber, P. C. and A. Leaf. 1991. Cardiovascular effects of omega 3 fatty acids. In: Simopoulos, A. P., Kifer, R. R., Martin, R. E. and Barlow, S. (eds), Health effects of ${\omega}3$ polyunsaturated fatty acids in seafoods. World Review of Nutrition and Dietetics, Basel, Karger, Vol. 66, pp 218-232
  37. Weisinger, H. S., A. J. Vingrys and A. J. Sinclair. 1996. Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. Ann. Nutr. Meta. 40, 91-98 https://doi.org/10.1159/000177900
  38. Yamada, N., J. Shimizu, M. Wada, T. Takita and S. Innami, 1998. Changes in platelet aggregation and lipid metabolism in rats given dietary lipids containing different n-3 polyunsaturated fatty acids. J. Nutr. Sci. Vitaminol (Tokyo). 44, 279-289 https://doi.org/10.3177/jnsv.44.279

Cited by

  1. Development of Convenient Menu School Breakfast Program for High School Students vol.29, pp.4, 2013, https://doi.org/10.9724/kfcs.2013.29.4.343