DOI QR코드

DOI QR Code

꾸지뽕나무에서 분리한 xanthones의 tyrosinase 저해제 연구

Tyrosinase Inhibitory Xanthones from Cudrania tricuspidata

  • 오상석 (경상대학교 원예학과) ;
  • 서은진 (경상대학교 응용생명과학부) ;
  • 김회영 (경상대학교 응용생명과학부) ;
  • 류영배 (경상대학교 응용생명과학부) ;
  • 이진환 (경상대학교 응용생명과학부) ;
  • 갈상완 (진주산업대학교 미생물공학과) ;
  • 박기훈 (경상대학교 응용생명과학부)
  • Oh, Sang-Seok (Department of Horticulture, Gyeongsang National University) ;
  • Seo, Eun-Jin (Division of Applied Life Science(BK2l Program), Environmental Biotechnology National Core Research Center, Research Institute of Life Science, Gyeongsang National University) ;
  • Kim, Hoi-Young (Division of Applied Life Science(BK2l Program), Environmental Biotechnology National Core Research Center, Research Institute of Life Science, Gyeongsang National University) ;
  • Ryu, Young-Bae (Division of Applied Life Science(BK2l Program), Environmental Biotechnology National Core Research Center, Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Jin-Hwan (Division of Applied Life Science(BK2l Program), Environmental Biotechnology National Core Research Center, Research Institute of Life Science, Gyeongsang National University) ;
  • Gal, Sang-Wan (Department of Microbiological Engineering, Jinju National University) ;
  • Park, Ki-Hun (Division of Applied Life Science(BK2l Program), Environmental Biotechnology National Core Research Center, Research Institute of Life Science, Gyeongsang National University)
  • 발행 : 2007.04.25

초록

꾸지뽕나무(Cudrania tricuspidata(Carr.) Bureau) 뿌리껍질에서 3종의 xanthones 화합물을 분리하였으며, 분광학적인 자료를 바탕으로 cudraxanthone L (1), cudraxanthone D (2), 그리고 cudraxanthone M (3)으로 구조동정되었다. 분리된 화합물을 L-tyrosine이 기질로 작용할 때 tyrosinase 저해 활성을 측정한 결과 cudraxanthone M (3)의 $IC_{50}$ 값이 $16.5{\mu}M$로 가장 높은 저해 효능을 보였으며, kinetic type은 uncompetitive inhibition로 저해 상수($K_i$)는 $1.6{\mu}M$로 측정되었다. 또한 이 화합물은 $20{\mu}M$의 농도에서 lag time이 310초로 측정 되어 대조화합물인 kojic acid와 유사한 저해능을 나타내었다.

The methanolic roots bark extract of Cudrania tricuspidata (Carr.) Bureau was chromatographed, which yielded three xanthones 1-3 by tyrosinase inhibitory activity-guided fractionation. The structures were fully characterized by analysis of physical and spectral data. Among them, furano prenylxanthone 3, never reported as tyrosinase inhibitor, showed potent activity with $IC_{50}$ value of $16.5{\mu}M$, and appeared to inhibit the polyphenol oxidase activity of tyrosinase in an uncompetitive inhibitor($K_i=1.6{\mu}m$) when L-tyrosine was used as a substrate. Moreover, potent inhibitor furano prenylxanthone 3 had an extended lag time of 310 sec at $20{\mu}M$, while lag time of kojic acid as positive control was prolonged with 350 sec at the same concentration.

키워드

참고문헌

  1. Mayer, A. M. 1995. Polyphenol oxidases in plants-recent progress. Phytochemistry 26, 11-20 https://doi.org/10.1039/9781847554758-BP011
  2. Wilcox, D. E., A. G. Porras, Y. T. Hwang, K. Lerch, M. E. Winkler and E. I. Solomon. 1985. Substrate analogue binding to the coupled binuclear copper active site in tyrosinase. J. Am. Chem. Soc. 107, 4015-4027 https://doi.org/10.1021/ja00299a043
  3. Sanchez-Ferrer, A., J. N. Rodriguez-Lopez, F. Garcia-Ganovas and F, Garcia-Carmona. 1995. Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta. 1247, 1-11 https://doi.org/10.1016/0167-4838(94)00204-T
  4. Whitaker, J. R. 1995. Polyphenol oxidases. In 'Food Enzymes, Structure and Mechanism', pp 271-307. ed. Wong, D. W. S., Chapman & Hall, New York
  5. McEvily, A. J., R. Iyengar and W. S. Otwell. 1991. Sulfite alternative prevents shrimp melanosis. Food Technol. 45, 80-86
  6. McEvily, A. J., R. Iyengar and W. S. Otwell. 1992. Inhibition of enzymatic browning in foods and beverage. Crit. Rev. Food Sci. Nutr. 32, 253-273 https://doi.org/10.1080/10408399209527599
  7. Friedman, M. 1996. Food browning and its prevention: An overview. J. Agric. Food Chem. 44, 631-653. https://doi.org/10.1021/jf950394r
  8. Rescigno, A., F. Sollai, B. Pisu, A. Rinaldi and E. Sanjust. 2002. Tyrosinase inhibition: general and applied aspects. J. Enzyme Inhib. Med. Chem. 17, 207-218 https://doi.org/10.1080/14756360210000010923
  9. Mosher, D. B., M. A. Pathak and T. B. Fitzpatrick. 1983. Vitiligo, etiology, pathogenesis, diagnosis, and treatment, eds. Fitzpatrick, T. B., A. Z. Eisen, K. Wolff, I. M. Freedberg and K. F. Austen. pp 205-225. 'Update: Dermathology in general medicine'. McGraw Hill, New York
  10. Maeda, K. and M. Fukuda. 1991. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem. 42, 361-368
  11. Fu, B., H. Li, X. Wang, F. S. C. Lee and S. Cui. 2005. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 53, 7408-7414 https://doi.org/10.1021/jf051258h
  12. Miyazawa, M., T. Oshima, K. Koshio, Y. Itsuzaki and J. Anzai. 2003. Tyrosinase inhibitor from black rice bran. J. Agric. Food Chem. 51, 6953-6956 https://doi.org/10.1021/jf030388s
  13. Nerya, O., R. Musa, S. Khatib, S. Tamir and J. Vaya. 2004. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65, 1389-1395 https://doi.org/10.1016/j.phytochem.2004.04.016
  14. Kubo, I., I. Kinst-Hori, Y. Kubo, Y. Yamagiwa, T. Kamikawa and H. Haraguchi. 2000. Molecular design of antibrowing agents. J. Agric. Food Chem. 48, 1393-1399 https://doi.org/10.1021/jf990926u
  15. Hano, Y., Y. Matsumoto, J. Y. Sun and T. Nomura. 1990. Structures of four new isoprenylated xanthones, cudraxanthones H, I, J, and K. Planta Med. 56, 478-481 https://doi.org/10.1055/s-2006-961016
  16. Lee, J. H., B. W. Lee, J. H. Kim, W. D. Seo, K. C. Jang and K. H. Park. 2005. Antioxidant effects of isoflavones from the stem bark of Cudrania tricuspidata. Agric. Chem. Biotechnol. 48, 193-197
  17. Nomura, T., Y. Hano and T. Fujimoto. 1983. Three new isoprenylated xanthones, cudraxanthone A, B and C, from the root bark of Cudrania Tricuspidata (carr.) bur. Heterocycles 20, 213-218 https://doi.org/10.3987/R-1983-02-0213
  18. Fujimoto, T., Y. Hano and T. Nomura .1984. Components of root bark of Cudrania tricuspidata1. Structures of four new isoprenylated xanthones, cudraxanthones A, B, C and D. Planta Med. 50, 218-221 https://doi.org/10.1055/s-2007-969682
  19. Hano, Y., Y. Matsumoto, J. Y. Sun and T. Nomura. 1990. Structures of four new isoprenylated xanthones, cudraxanthones H, I, J, and K. Planta Med. 56, 478-481. https://doi.org/10.1055/s-2006-961016
  20. Hano, Y., Y. Matsumoto, J. Y. Sun and T. Nomura. 1990. Structures of three new isoprenylated xanthones, cudraxanthones E, F, and G. Planta Med. 56, 399-402 https://doi.org/10.1055/s-2006-960993
  21. Lee, B. W., J. H. Lee, S. W. Gal, Y. H. Moon and K. H. Park 2006. Selective ABTS radical-scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci. Biotechnol. Biochem. 70, 427-432 https://doi.org/10.1271/bbb.70.427
  22. Lee, B. W., S. W. Gal, K. M. Park and K. H. Park 2005. Cytotoxic xanthones from Cudrania tricuspidata. J. Nat. Prod. 68, 456-458 https://doi.org/10.1021/np030481a
  23. Lee, B. W., N. S. Kang and K. H. Park. 2004. Isolation of antibacterial prenylated flavonoids from Cudrania tricuspidata. J. Korean Soc. Appl. Biol. Chem. 47, 270-273
  24. Khatib, S., O. Nerya, R. Musa, M. Shmuel, S. Tamir and J. Vaya. 2005. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem. 13, 433-441 https://doi.org/10.1016/j.bmc.2004.10.010

피인용 문헌

  1. Antioxidant Activities of Volatile Aroma Components from Cudrania tricuspidata (Carr.) Bureau Extracts vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1493