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Short Term Interest Rate Model Using Box-Cox
Transformation*

Youngsoo Choi”? and Yoondong Lee?

Abstract

This paper propose a new short-term interest rate model having a dif-
ferent nonlinear drift function and the same diffusion coefficient with Chan
et al. (1992) model. The fractional polynomial power of the drift function
in our model is linked to the local volatility elasticity of the diffusion coef-
ficient. While the nonlinear drift function estimated by Ait-Sahalia (1996a)
and others has a feature that higher interest rates tend to revert downward
and low rates upward, the drift function estimated by our nonlinear model
shows that higher interest rate mean-reverts strongly, but, medium rates has
almost zero drift and low rates has a very small drift. This characteristic
coincides the empirical result based on the nonparametric methodology by
Stanton (1997) and the implication by the scatter plot of the short rate data.
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1. Introduction

Risk-free short-term interest rate (or short rate) is used in financial economics
to determine term structure of interest rates and prices of bonds of various ma-
turities at any given time. Short rates also serve as an important element in
the development of tools for risk management of valuing and hedging the huge
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institutional holdings of fixed income securities and in empirical work on term
premiums and yield curves, where short rates are treated as reference rates for
other interest rates.

The dynamics of the short rate, r;, are usually described in the form of
continuous-time diffusion models having linear drifts (local expected changes)
and often linear diffusion coefficients (variances of local changes). However, these
linear term structure models are developed, since it is convenient for driving
and estimating explicit forms of the term structure of interest rates. Empirical
observations by Chan et al. (1992; hereafter CKLS) on the U.S. Treasury Bill
rate show that “the dynamics of the short rate should be those that allow the
volatility of interest rate changes to be highly sensitive to the level of the short
rate.” Volatilities may be estimated relatively accurately using high-frequency
observations of the short rate with the Generalized Method of Moments.

To find the genuine data property of the short rate, Ait-Sahalia (1996a) and
Stanton (1997) propose nonparametric methods for estimating the drift and dif-
fusion of the short rate. Both papers show that, while the estimated diffusion
term is similar to that estimated by CKLS, the substantial nonlinearity in the
drift term is observed and this feature is the main source of rejection of the linear
drift models of CKLS and others. Ait-Sahalia finds that the short rate behaves
like a random walk around its mean, reverting toward the mean when it is far
away from the mean. Stanton shows that the drift term is close to zero for low
and medium rates, but revert toward the mean at higher interest rates. Similar
results are reported by Conley et al. (1997; hereafter CHLS), who show that
“when interest rates are high, local mean reversion is small and the mechanism
for inducing stationarity is the increased volatility of the diffusion process.”

Figure 1.1 plots the drift functions — the local expected change in the short rate
per year as a function of the level of the rate — estimated by Ait-Sahalia and our
generalized nonlinear drift, constant elasticity of variance (GNCEV) models using
one-month U.S. Treasury bill rates like CKLS and one-month Eurodollar deposits
rates. This figure is similar to Figure 1 of Jones (2003); in the case of having the
same drift functions of Ait-Sahalia, higher interest rates tend to revert downward
and low rates upward. However, the drift function estimated by our nonlinear
model shows that, while higher interest rate mean-reverts strongly, medium rates
has almost zero drift and low rates has a very small drift depending on the data.
This characteristic coincides the empirical result based on the nonparametric
methodology by Stanton (1997) and the implication of scatter plot of the short
rate data.
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Our model is proposed on the base of empirical observations; the QQ-plot and
Jarque-Bera test for the short rate show that it does not satisfy the normality
assumption. As an improvement tool, we use the common Box-Cox (1964) trans-
formation to produce a Gaussian time series for the short rate, but transformed
series has serial correlations. Hence, it is natural to assume that transformed
series follow the Ornstein-Uhlenbeck (O-U) process. Applying Ito’s lemma to the
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Figure 1.1: Drift function estimates: The first (second) figure contains the drift
function estimated by Ait-Sahalia and our nonlinear drift models using monthly
one-month U.S. Treasury bill (Eurodollar deposit) rates.
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transformation and extending the output, the continuous-time diffusion model
having nonlinear drift and diffusion term is obtained. The fractional polynomial
power of the drift function in our model is linked to the local volatility elasticity
of the diffusion coefficient.

The remainder of this paper is organized as follows: In Section 1, we derive
a new short rate model and compare it with the existing models. In Section
2, we illustrate the empirical analysis with the Generalized method of moments
(GMM) and conditional multiple regression methods, and in Section 4, we draw
conclusions.

2. One Factor Interest Rate Models

Empirical observations on the TBills show that the short term interest rate,
¢, does not satisfy the normality assumption through the QQ-plot and Jarque-
Bera test. We use the Box-Cox transform to produce a Gaussian time series for
the short term interest rate as follows:

A
ry —1
']"é/\) _ —t—r for A §é O, (21)

Inr; for A\=0.
Thus, it is natural to assume that a new state variable r® follows the OU-process:
dr™ = (a + BriM)dt + odW. (2.2)
Applying Ito’s lemma to the function r; = (1 + /\r( ))1/ A we have
dro = (14 M) T (@ + Bt + 0d W] + 31— 0@ + 1) T ot

= [(a g) Ty Ay grt + 2(1 — Na?ri™ 2’\] dt + artl_’\th.
(2.3)
Thus, replacing 1 — A by =, that is, 1 — A =+, (2.3) can be written as

2
dry = [(a - -I—-—B ’Y) r] + 1—ﬂ T + 2702 e 1]dt + or] dW;. (2.4)
Note that (2.4) nests the Vasicek process in the case of y = 0:
dry = (a — B+ ,Brt)dt + odW;

and the Black-Karasinski model as « approaches 1, since

hmr —hm—t—r Inr;.
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Thus we consider the generalized nonlinear drift, constant elasticity of variance
(CEV) process as follows

dry = (a+bry +cr] + drt%_l)dt + or] dW4, (2.5)

which nests the CKLS model with the linear drift term a + bry.

Several existing one-factor short rate models having nonlinear drifts are in-
troduced to compare them with our model. Ait-Sahalia (1996b) proposes the
following model:

dry = <a +bry + cr? + g) dt + \/ bo + bary + bar®dW. (2.6)
t

CHLS (1997) adopt the same drift parameterization as Ait-Sahalia but keep the
CEV diffusion used by Chan et al. (1992):

dry = <a +bre +orf + g) dt + or{dW. 27)
t

Eom (1998) considers the nonlinear drift CEV (NCEV) process with the CEV
diffusion used by Chan et al. (1992), but selects some drift parts of equation
(2.5):

dry = (bry + drtZ'Y_l)dt + or] dW. (2.8)

As a comparison, we also consider the nonlinear drift CEV process with the CEV
diffusion used by Chan et al. (1992), but selects another drift parts of equation
(2.5):

dry = (bry + cr))dt + or] dW,. (2.9)

To check up the stationarity of the time series, let X; = r§7) =(r;, " —1)/
(1 — ~) and suppose that
dXy = —k(X¢ — p)dt + odW, (2.2%)

which corresponds to the model (2.2) with 8 = —k and a = ku. Its solution is
called the mean-reverting OU process and has the form

t ¢
X, =e " (Xo + rw/ e”* ds) + a/ e~ R(t=9) dW,
0 , P (2.10)
= Xoe ™™ 4 p(l — e™") + cr/ e =(t=3) g
0
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Since fot e~*(t=3) dW, follows a Gaussian process with mean zero and variance
(1 — e72)/2k, the dynamics of X; are assumed to follow, over time steps of
length h, the following process

_ _ i.id 2 ok
Xntih = Xone ™™ +u(l— ™) +en11,  enp1 '~ N(O, g-(l—e? h))-

The positivity of the unconditional variance of time series {X,x} imposes the
stationary restriction:

e <1 = pf=-k<0.

3. Empirical Analysis

In this section, we introduce the data used in our empirical work, find the
appropriate parameters of several generalized nonlinear drift, CEV process and
Ait-Sahalia model by using the Generalized Method of Moments (GMM) or the
multiple regression analysis, and finally describe the model feature on the basis
of the drift estimate function.

3.1. Data Sources

The time series data used to model the short-term interest rate are the same
monthly one-month Treasury bill rates used by Chan et al. (1992) and monthly
one-month Eurodollar deposit rates. The Treasury bills cover the period from
June 1964 to November 1989, providing 306 observations. The one-month Eu-
rodollar yields are based on bid rates for Eurodollar deposits collected around 9:30
a.m. Eastern time and annualized using a 360-day year or bank interest. They
cover the period from January 1971 to January 2007, providing 433 observations.
Their time series data are plotted in Figure 3.1.

3.2. Parameter Estimates Using GMM

The Euler scheme of the generalized nonlinear drift, CEV process for r; in
equations (2.5) and (2.8)—(2.9) is needed for parameters estimation and can be
written over time steps of length h:

Ar = ropp — 18 = plre)h + or zesn, zevn ~ N(0,h),

where (1) = a + bre + cr) +dr27 (u(ry) = bry + dr27h, w(ry) = bry + cr)) is
for equation (2.5) ((2.8), (2.9)). The error term uiyp, = o7 2 h = Ar — p(re)h
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satisfies the following conditional expectations:

E¢(usn] =0,

Et[ut2+h] = 027}27"-
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Figure 3.1: Monthly one-month rate: The first (second) figure contains the
monthly one-month Treasury bill (Eurodollar) rate from June 1964 to November
1989 (from January 1971 to January 2007).
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Using instruments Z; = (1 rt), we have unconditional moment conditions

Elugn] =0,
E[rurn] =0,
E[uZ,, — o?r2"h] =0,

E[r(u2,), — o’r7h)] = 0.

The number of parameters is restricted to be less than or equal to four for these
above moment conditions. Thus, the process for equation (2.5) is restricted to
be like equation (2.3) as follows:

1 -
p(rey) = bry +cr] + 50271"?7 L (3.1)

Table 3.1 reports the parameter estimates, associated standard deviation er-
rors and p-values, and Rjz- information about how well the corresponding models
are able to forecast the future rate change and volatility. The R? statistics are
computed as the proportion of the total variation of the actual yield changes,
Yt = 18 — T4—p, for 7 = 1 and their volatility (squared yield changes) for j = 2
explained by the predictive values of corresponding models, §:, as follows:

_ Var(y; — )

2 _
Ri=1-— ) (3.2)
Aar ¢ — Ui 2
R2_1_ _Y_LV%@?;_D (3.3)

3.3. Parameter Estimates Using Multiple Regression

If the number of parameters in the model is greater than four, a simple ex-
tension of instruments like Z; = (1 T rtz) does not guarantee the convergence of
the sample moment conditions for the GMM estimation. Thus, we employ the
two-stage procedure: First, given < in the appropriate range, run the multiple
regression for the dependent variable, y; = r; — 11, as follows

v = f(r, B) + e, €t i"z;'*dD(O, 02),
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Table 3.1: Estimates of alternative models for the short rate: The estimation hori-
zon for r;, the annualized one-month U.S. Treasury bill yield, is from June, 1964 to
December, 1989 (306 observations). The parameters are estimated by the GMM with
standard deviations in parentheses and p-values in | . The R? statistics are computed as
the proportion of the total variation of the actual rate changes (j = 1) and their volatil-
ity (squared rate changes) (j = 2) explained by the predictive values of corresponding
models.

Model Equation Equation Equation CKLS  Vasicek

(3.1) (2.9) (2.8)
a 0 0 0 0.042  0.030
(0.016)  (0.014)
[0.0009]  [0.033]
b 1.268 1.170 0593  —0.608 —0.449
(0.631)  (0.647)  (0.317)  (0.270)  (0.247)
[0.045]  [0.071]  [0.061]  [0.024]  [0.069]
cord —4825  —4108  —6.801 0 0
(2.511) 1913  (7.311)
[0.055]  [0.032]  [0.352]
o2 1.625 1.614 1552 1.779  0.0004

(2572)  (2.532)  (2.366)  (2.906) (0.0001)
[0.527]  [0.524]  [0.512]  [0.540]  [0.0009]
5 1.491 1.490 1.482  1.508 0
(0.304) 0301  (0.293)  (0.313)
[0.000)  [0.000]  [0.000]  [0.000]
R3(Ar)  0.037 0.038 0.041 0027  0.025
R2(Ar)  0.209 0.213 0230  0.163  0.130

where the independent variables with 8 = (a, b, ¢, d) are given by

(a+ bry CKLS model,
a+bry+cr] Equation (2.9),
f(re,B) =qa+bri+ dri 1 Equation (2.8), (3.4)
a+bry+cr] +dri’™!  Equation (2.5),
la + bry + crt2 + d% Ait-Sahalia.

Figure 3.1 plots the multiple R?-values as a function of v: The first (second)
figure contains the multiple R? values measured by equation (3.2) as a function
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Table 3.2: Estimates of multiple regression: The annualized one-month U.S. Treasury
bill yield covers from June 1964 to December 1989 (306 observations) and the annualized
one-month Eurodollar rate covers from January 1971 to January 2007 (433 observations).
The parameters are estimated by the multiple regression analysis with standard devia-
tions in parentheses and p-values in [ ]. The F-statistics are reported with p-values in
parentheses and associated degrees of freedom (d.f.). The RJ2. statistics are computed as
the proportion of the total variation of the actual rate changes (j = 1) and their volatil-
ity (squared rate changes) (j = 2) explained by the predictive values of corresponding
models.

Data Treasury Bill Eurodollar rate
Models | Ait-Sahalia  Eq. (2.5) Ait-Sahalia  Eq. (2.5)
a —0.045 3.64e—03 | —6.22¢—03 9.34e — 04
(0.021) (2.59e — 03) | (3.30e —03) (1.32e —03)
[.036] [.162] [.060] [.479]
b 0.707 —6.88¢ - 02 | 1.46e—01 —2.70e —02
(0.295) (5.18¢ —02) | (5.88¢ —02) (3.0le —02)
[.017] [.185] [.013] [.370]
c —3.448 7.23e+01 | —8.40e — 01 4.28
(1.232) (4.15e4+01) | (2.67e —01) (2.50)
[.005] [0.082] [.0018] [.087]
d 0.0009 —2.95¢+04 | 6.00e —05 —1.67e+ 02
(0.0005) (1.11e+04) | (4.08¢ —05)  (6.00e+1)
[.051] [.008] [.143] [.0058]
y 4.08 3.06
o 0.008 .008 .008 .007
F-stat. 6.281 8.637 5.551 8.669
(-0004) (1.6e —05) | (9.59e —04) (1.35¢ — 05)
d.f. (3,301) (3,301) (3,428) (3, 428)
R3(Ar) 0.059 0.079 0.037 .057
R2(Ar) 0.343 0.422 0.163 .202

of 7 using the one-month Treasury bill (Eurodollar deposit) rates. For example,
the legend, BCT-y (CEV, BCT-ext’ed), means that the R?-values are obtained
from the multiple regression with independent variables, Equation (2.9) ((2.8),
(2.5)). The R2-value of the CKLS model is independent of the value of v and is
similar to the value shown in Table 3.1. The R2-value of the Ait-Sahalia model,
0.058, is also independent of the value of v and is twice larger than that of the
CKLS model, 0.027. However, Figure 3.1 implies that the best predictive model
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is the GNCEV process by taking the appropriate value for +.

Second, select the optimal vy having the largest R2?-value for the multiple re-
gression model in (3.4) with equation (2.5) and then run the multiple regression
for the equation (2.5) and Ait-Sahalia models. Table 3.2 reports the parame-
ter estimates, F-statistics, and multiple R?-values. While just two independent
variables in the GNCEV process are significant, four all independent variables
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Figure 3.2: Multiple R? as a function of 4: The first (second) figure contains
the multiple R? values measured by equation (3.2) as a function of v using the
one-month Treasury bill (Eurodollar deposit) rates.
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including the intercept term in the Ait-Sahalia model are significant. However,
regression results such as R2-values and F-statistics for both data sets imply that
the GNCEYV process is better than the Ait-sahalia model.

The drift function estimates using the parameter estimates in Table 3.2 is

Interest rate changes: 1M-TBills
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Figure 3.3: Monthly interest rate changes: The first (second) figure contains
the monthly changes in the one-month Treasury bill (Eurodollar deposit) rates
plotted against rates on preceding month. It also contains three regression lines
drawn by a LOWESS nonparametric regression, and our nonlinear drift and Ait-
Sahalia models.
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plotted in Figure 1.1 and is similar to Figure 1 of Jones (2003); in the case of
having the same drift functions of Ait-Sahalia, higher interest rates tend to re-
vert downward and low rates upward. However, the drift function estimated by
our GNCEV model shows that, while higher interest rate mean-reverts strongly,
medium rates has almost zero drift and low rates has a very small drift depend-
ing on the data. This characteristic comes from the negative reaction between
independent variables r} and "'7:2 7=, Furthermore, this feature coincides the em-
pirical result based on the nonparametric methodology by Stanton (1997) and
the implication of scatter plot of the short rate data in Figure 3.1. Figure 3.1
shows that our model drift function is close to that obtained by a LOWESS non-
parametric regression at low and medium rates, but our model has a very strong
mean-reversion trend at high rates: this phenomenon coincides the scattering
plot of changes in the short rate.

4. Conclusion

In this article, we employ the Box-Cox transformation to fix the normality
assumption for the short rate and propose a new short-term interest rate model
having a different nonlinear drift function and the same diffusion coeflicient with
Chan et al. (1992) model. The drift function in our model has two fractional poly-
nomial powers, linked to the local volatility elasticity of the diffusion coefficient.
While the nonlinear drift function estimated by Ait-Sahalia (1996a) and others
has a feature that higher interest rates tend to revert downward and low rates
upward, the drift function estimated by our nonlinear model shows that higher
interest rate mean-reverts strongly, but, medium rates has almost zero drift and
low rates has a very small drift. This characteristic comes from the negative
reaction between two fractional polynomials as an independent variables. Fur-
thermore, this feature coincides the empirical result based on the nonparametric
methodology by Stanton (1997) and the implication of scatter plot of the short
rate data. In future research, we will estimate the parameters in several nonlin-
ear CEV and Ailt-Sahalia models using the maximum likelihood estimation and
Bayesian method to make sure that nonlinear drift is a feature of daily, weekly,
and monthly data, which is contrary to the result obtained by Jones (2003).

References

Alt-Sahalia, Y. (1996a). Nonparametric pricing of interest rate derivative securities. Econo-
metrica, 64, 527-560.



254 Youngsoo Choi and Yoondong Lee

Ait-Sahalia, Y. (1996b). Testing continuous-time models of the spot interest rate. The Review
of Financial Studies. 9, 385-426.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal
Statistical Society Ser. B. 26, 211-252.

Conley, T. G., Hansen, L. P., Luttmer, E. G. J. and Scheinkman, J. A. (1997). Short-term
interest rates as subordinated diffusions. The Review of Financial Studies, 10, 525-577.

Cox, J. C., Ingersol], J. E. and Ross, S. A. (1985). A theory of the term structure of interest
rates, Econometrica, 53, 385-407.

Chan, K. C., Karolyi, G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical
comparison of alternative models of the short-term interest rate. Journal of Finance, 47,
1209-1227.

Eom Y. H. (1998). An Efficient GMM Estimation of Continuous-Time Asset Dynamics: Impli-
cations for the Term Structure of Interest Rates. Technical Report of Yeonsei University

Jones, C. S. (2003). Nonlinear mean reversion in the short-term interest rate. The Review of
Financial Studies, 16, 793-843.

Stanton, R. (1997). A nonparametric model of term structure dynamics and the market price
of interest rate risk. Journal of Finance, 52, 1973-2002.

Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial
Economics, 5, 177-188.

[Received February 2007, Accepted March 2007]



