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Estimation of the Change Point in Monitoring the
Mean of Autocorrelated Processes*

Jaeheon Lee? Jung Hee Han? and Sang Hyun Jung®

Abstract

Knowing the time of the process change could lead to quicker identifi-
cation of the responsible special cause and less process down time, and it
could help to reduce the probability of incorrectly identifying the special
cause. In this paper, we propose the maximum likelihood estimator (MLE)
for the process change point when a control chart is used in monitoring the
mean of a process in which the observations can be modeled as an AR(1)
process plus an additional random error. The performance of the proposed
MLE is compared to the performance of the built-in estimator when they
are used in EWMA charts based on the residuals. The results show that the
proposed MLE provides good performance in terms of both accuracy and
precision of the estimator.

Keywords: Process change point; autocorrelated process; exponentially weighted moving
average chart; residual; maximum likelihood estimator.

1. Introduction

Control charts are widely used to monitor processes for the purpose of detect-
ing the occurrence of special causes which produce changes in the process. When
a control chart signals that a special cause is present, process engineers must ini-
tiate a search for and an identification of the special cause. However, the signal
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from a control chart does not provide process engineers with what caused the pro-
cess to change or when the process change actually occurred. Knowing the time
of the process change could lead to identify the special cause more quickly, and
to take the appropriate actions immediately to improve quality. Consequently,
estimating the time of the process change would be useful to process engineers.

The cumulative sum (CUSUM) and the exponentially weighted moving aver-
age (EWMA) charts provide built-in change point estimators from the behavior of
the past plots on the control chart. Nishina (1992) compared the performance of
built-in estimators when used in a CUSUM chart, an EWMA chart, and a moving
average (MA) chart. Samuel et al. (1998) considered the use of the MLE for the
change point in the normal process mean, and investigated its performance when
used after a signal from an X chart. Pignatiello and Samuel (2001) considered
the use of the MLE for the change point instead of the built-in estimator when
either a CUSUM chart or an EWMA chart issued a signal. They concluded that
the performance of the MLE appears to be better than the built-in estimators
over the range of magnitudes of change considered. Lee and Park (2006) pro-
posed the MLE for the process change point when a control chart with the fixed
sampling rate (FSR) scheme or the variable sampling rate (VSR) scheme is used
in monitoring a process to detect changes in the process mean and/or variance
of a normal quality variable.

A fundamental assumption in most traditional applications of control charts
is that the observations from the process are statistically independent. However,
the independence assumption is often violated in some manufacturing processes,
such as the chemical industry, because the dynamics of the process produce au-
tocorrelation in the process observations. The presence of autocorrelation can
have a large impact on traditional control charts developed using the indepen-
dence assumption. It can result in an average false alarm rate much higher than
expected or desired.

Two general approaches to dealing with autocorrelation in process monitoring
have been considered. The first approach uses traditional control charts but
adjusts the control limits and the techniques for estimating process parameters
to account for the autocorrelation. The second approach fits a time series model
to the process observations and the forecast errors or residuals from this model
are used in traditional control charts. See Lu and Reynolds (1999) for more
details.

In this paper, we propose the MLE for the process change point in monitor-
ing the process mean when there is autocorrelation. We consider a first-order
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autoregressive process (an AR(1) process) with an additional random error as an
autocorrelated process model, and consider EWMA charts based on the resid-
uals for monitoring autocorrelated processes. The performance of the MLE is
investigated by the extensive simulation, and compared to the performance of
the built-in estimator.

2. The Autocorrelated Process Model

Let X; be an observation taken from the process at time ¢. For the AR(1)
process model with a random error, X; can be written as

Xe=pe+e,t=12.... (21)

The €;’s are independent normal random errors with mean 0 and variance o2,

and p¢ is an AR(1) process of the form

#t:(1_¢)§+¢,ut—l+at7t:1’27--'a (22)

where ¢ is the process mean and ¢ is the AR parameter satisfying |¢| < 1. The
oy’s are assumed to be independent normal variables with mean 0 and variance
o2 and independent of the ¢;’s. The assumption that the starting value po follows
a normal distribution with mean £ and variance o2 = 02/(1 — ¢?) implies that
the distribution of X; is constant with mean £ and variance 0% = o2 + o2 for
t = 1,2,.... Define ¥ to be the proportion of the total process variance that
is due to the AR(1) process so that ¢ = 2/03{. Then the proportion of the
variance due to ¢ is 1 — %, and the correlation between X; and X;y; is ¢1).
The AR(1) process with an additional random error in equation (2.1) and (2.2)

is equivalent to an ARMA(1,1) process (Box et al., 1994) that can be written as
(1-¢B)X:=(1—-¢)§+(1—60B)n, (2.3)

where the ;s are independent normal variable with mean 0 and variance a?y, 0 is
the moving average (MA) parameter, ¢ and £ are the same in equation (2.2), and
B is a backshift operator such that BX; = X;_;. Relatively simple equations
are available for expressing the parameters ¢, 6, £, and a?y in the ARMA(1,1)
model in terms of the parameters ¢, £, 02, and o2 in the AR(1) plus random
error model, and vice verse (see, e.g., Reynolds et al., 1996; Lu and Reynolds,
1999).

The AR(1) plus random error model has been used in a number of other

papers as a model for autocorrelation observations (see, e.g., Padgett et al., 1992;
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MacGreger and Harris, 1993). In some applications it may be possible to model
X: as a simple AR(1) process, and this model can be treated as a special case of
the model with 02 = 0. This model used here can be extended to the situation
in which a sample of n > 1 observations is taken at each sample time (see, e.g.,
Reynolds et al., 1996).

3. The EWMA Chart Based on the Residuals

We consider the monitoring problem of detecting special causes that shift £
away from the in-control value, £. It is convenient to express the shift in £ in
terms of the standardized shift § = (€ — &)/ox. We assume that the values of
& and ox are known, but the value of § is unknown. When autocorrelation is
present in a process, a time series model can be fitted to process observations
and the residuals from this model can be used in the control charts. If the fitted
model is the same as the true process model and the parameters are estimated
without error, then the residuals are independent normal random variables with
mean O and constant variance when the process is in-control.

For the process model in equation (2.3), the residual at time ¢ from the min-

imum mean square error forecast made at time ¢ — 1 is

er = Xy — & — d(Xe—1 — &o) + Oesy (3.1)

(see Box et al., 1994). Suppose that there is a step change in the process mean
from &y to & between time ¢t = 7 and t = 7 + 1. Then the expectations of the

0, t=7,7—1,...,
E(Ct):{

residuals are

c(r)d, t=7+1,74+2,...,
where
¢ -0 —p+1
1-9 7X

(see Lu and Reynolds, 1999). The residual immediately after the shift has the
largest mean, and then the means of the residuals decrease to an asymptotic mean
of (1—¢)dox/(1—6). These residuals are independent and normally distributed
with variance o2.

The EWMA chart based on the residuals for detecting changes in the process
mean uses the control statistic

a(r) = (3.2)

Ys = des + (1 — Y1,
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for a weight A(0 < A < 1) and Yy = 0. This chart signals that the process mean
has changed if |Y;| > k+/A/(2 — A) o, where k is a constant. When A\ = 1,
the EWMA chart reduces to a standard Shewhart chart. Because the residuals
are independent, the value of k that will give a particular in-control average run
length (ARL) can be determined using methods for independent observations
(see, e.g., Lucas and Saccucci, 1990).

4. Estimation of the Process Change Point

Let 7 be the process change point, which is defined as the last sample from
the in-control process, and T'(> 7) be the time that the chart signals. Then X,
X2, ..., X, are the observations taken from the in-control process, whereas X, 41,
Xr+2, ..., Xp are from the changed process due to a step change.

Nishina (1992) proposed a built-in estimator for the process change point
when an EWMA chart signals a change. Nishina’s proposed change point esti-
mator is the starting point of the rejection run (the run that eventually exceeds
the upper or lower control limit). For example, following a signal that Y7 exceeds
the upper control limit, the change point estimator for an increase in the process
mean, would be

v = max{t : ¥; < mg}, (4.1)

where mg is the in-control value of the mean.
Samuel et al. (1998) proposed the MLE for the change point in an independent
normal process, as

7g = argmax{(T — t)(X'tH,T — mo)z}, (4.2)
0<t<T

where X117 = Z?:t 41 Xi/(T —t) is the average of the last T' — ¢ observations,
and arg maxg<i<7{B:} denotes the value of ¢ in the range of 0 < ¢t < T which
maximizes an arbitrary function of ¢, B;. Pignatiello and Samuel (2001) showed
that 7g performs better than 7 over the range of magnitudes of change. In these
papers, they assumed that the in-control mean mg and the variance are known,
but the magnitude of change § is unknown. They used the conventional charting
methods, such as Shewhart, CUSUM, and EWMA, to decide that a change has
occurred, and then the change point likelihood is used for the following problem
of estimating 7 and § (see Hawkins et al., 2003). This same modeling framework
is used in this paper also.

The estimator in equation (4.2) can be used for a control chart based on the
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independent observations. We propose a MLE for the change point of the mean of
autocorrelated processes determined by equations (2.1) and (2.2), when a control
chart based on the residuals given by equation (3.1) gives a signal, as

T 2
(Z ci(?) €i>

1=t+1
T

> al)?

i=t+1

(

| (4.3)

Fr, = argmax J
0<t<T

/

where ¢;(t) is defined by equation (3.2). Details about the derivation of this
estimator are given in the Appendix.

5. Performance of the Estimator in Monitoring the Process
Mean

We compare the performance of the MLE 7, in equation (4.3), with the
performance of the built-in estimator 7y in equation (4.1) when an EWMA chart
based on the residuals signals a change. The Monte Carlo simulation is used in
evaluating the change point estimators.

The results from the 100,000 simulation runs for various sizes of change in £
and for A = 0.1,0.2,0.4,1.0 are given in Table 5.1 to Table 5.4. Table 5.1 is for
the case of ¥ = 0.5 and ¢ = 0.4, Table 5.2 is for the case of ¥ = 0.5 and ¢ = 0.8,
Table 5.3 is for the case of ¥ = 0.9 and ¢ = 0.4, and Table 5.4 is for the case
of ¥ = 0.9 and ¢ = 0.8. The numerical results are for nonnegative values of ¢
because it is believed that positive autocorrelation would be much more likely
in applications. The constant k for a given value of A is set up to achieve an
in-control ARL of 370.4. The process change points are generated by geometric
distribution with mean E(r) = 100.

The column labeled ARLs denotes the out-of-control ARL for a given value
of §, the column labeled Bias denotes the bias, that is the average of the estimate
minus the true change point, and the column labeled S.E. denotes the standard
error of the average. The last column labeled Pr(|7 — 7| < €) denotes the pro-
portion of the 100,000 runs where the estimated time of the change is within
+e of the actual change. This provides an indication of the precision of the two
estimators. In the last three columns in Tables, the entries in the first row are
for the proposed MLE, 7, and the entries in the second row are for the built-in
estimator, Ty .
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Table 5.1: Bias, associated standard error, and precision of change point estima-
tors when ¢ = 0.5 and ¢ = 0.4

Pr(|t —7| <¥)

é A k ARLs Bias | S.E. | e=0 1 3 5
0.5} 0.1 | 2.701 42.41 13.20 | 0.1031 | 0.04 0.11 0.21 0.29
16.30 | 0.1001 | 0.04 0.12 0.23 0.33

0.2 | 2.859 57.91 14.81 | 0.1063 | 0.04 0.11 0.21 0.28
40.72 | 0.1639 | 0.03 0.08 0.17 0.23

0.4 | 2.959 93.45 14.92 | 0.1124 | 0.04 0.11 021 0.29
84.42 | 0.2871 { 0.02 0.05 0.09 0.11

1.0 | 3.000 | 206.91 11.77 | 0.1112 | 0.05 0.12 0.23 0.31
204.07 | 0.6550 | 0.01 0.01 0.03 0.04

1.0 | 0.1 | 2.701 13.95 | —0.01 { 0.0528 | 0.14 0.31 0.51 0.64
—-2.41 | 0.0307 | 0.12 0.29 0.53 0.67

0.2 | 2.859 15.46 0.82 | 0.0458 | 0.14 0.30 0.51 0.64
0.65 | 0.0272 | 0.14 0.34 0.58 0.71

0.4 | 2.959 22.78 1.55 | 0.0408 | 0.14 0.30 0.51 0.64
10.40 | 0.0577 | 0.12 0.27 0.44 0.53

1.0 | 3.000 76.64 1.73 | 0.0332 | 0.14 032 0.53 0.65
72.26 | 0.2383 | 0.02 0.05 0.09 0.11

20 (01| 2701 577 | —1.17 | 0.0316 | 0.34 063 084 0.91
—-4.06 | 0.0278 | 0.22 0.46 0.67 0.75

0.2 | 2.859 519 —0.99 | 0.0299 | 035 0.63 0.84 091
—-2.44 | 0.0163 | 0.28 0.55 0.74 0.82

0.4 | 2.959 541 | —0.67 | 0.0281 | 0.35 0.63 0.85 0.92
-1.38 | 0.0098 | 0.35 0.62 0.82 0.90

1.0 | 3.000 14.27 0.27 { 0.0170 | 0.35 064 0.87 094
6.05 | 0.0371 | 0.25 0.43 0.59 0.67

3.0 01 ] 2701 3.80 | —0.79 | 0.0218 | 0.52 0.81 093 095
—4.44 | 00276 | 0.30 0.54 0.68 0.74

0.2 | 2.859 326 | —0.75 | 0.0243 | 053 0.81 0.93 0.96
—2.67 | 0.0158 | 0.37 0.60 0.74 0.82

0.4 | 2.959 2.97 | —0.70 | 0.0237 | 0.53 0.82 0.94 0.96
—1.68 | 0.0092 | 0.44 0.65 0.82 0.90

1.0 | 3.000 463 | —0.11 | 0.0160 | 0.54 0.84 096 098
—-0.69 | 0.0060 | 0.47 0.74 0.92 0.98
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Table 5.2: Bias, associated standard error, and precision of change point estima-
tors when ¢ = 0.5 and ¢ = 0.8

Pr(|f — 7| <€)

) A k ARL; Bias|{ S.E. | e=0 1 3 5
0.5} 0.1 (2701 | 102.87 46.45 | 0.2301 { 0.01 0.04 0.09 0.13
78.27 1 0.2990 | 0.02 0.04 0.08 0.12
0.2 | 2.859 | 140.33 52.14 | 0.2523 | 0.01 0.04 0.08 0.12
126.60 | 0.4308 | 0.01 0.03 0.06 0.08
0.4 | 2.959 | 195.22 54.60 | 0.2664 | 0.01 0.04 0.08 0.12
188.30 | 0.6101 | 0.01 0.02 0.03 0.05
1.0 | 3.000 | 295.37 52.58 | 0.2743 | 0.02 0.04 0.09 0.13
292,95 | 0.9301 | 0.00 0.01 0.02 0.02
1.0 01 | 2.701 34.06 6.92 | 0.0901 | 0.04 011 022 031
9.07 | 0.0715 | 0.05 0.13 0.27 0.39
0.2 | 2.859 45.08 8.65 | 0.0892 | 0.04 0.11 0.22 0.31
27.33 | 0.1206 | 0.04 0.10 0.21 0.30
0.4 | 2.959 73.09 10.26 { 0.0884 | 0.04 0.11 0.21 0.30
63.30 | 0.2210 | 0.02 0.06 0.11 0.15
1.0 | 3.000 | 179.10 1045 | 0.0868 | 0.04 0.11 0.22 031
176.06 | 0.5630 | 0.01 0.01 0.03 0.04
2.0 | 0.1 | 2.701 12.11 | —0.83 | 0.0581 | 0.10 0.26 0.49 0.64
—2.58 | 0.0296 | 0.10 027 054 0.69
0.2 | 2.859 12.79 [ —0.05 | 0.0551 | 0.10 0.25 0.48 0.63
—0.31 | 0.0207 | 0.13 034 062 0.76
0.4 | 2.959 17.48 1.28 | 0.0470 | 0.10 0.25 0.48 0.63
5.25 | 0.0367 | 0.13 032 0.55 0.66
1.0 | 3.000 58.59 3.53 (00335 | 0,09 024 046 0.61
53.56 | 0.1776 | 0.02 0.06 0.10 0.14
3.0 (01 ] 2.701 7.54 | —1.18 | 0.0458 | 0.16 040 0.69 0.83
—3.53 00283 | 014 036 064 074
0.2 | 2.859 7.14 | -0.87 | 0.0432 | 0.17 041 0.70 0.83
-1.89 | 0.0169 | 019 045 0.72 0.82
0.4 | 2.959 801 | —0.23 | 0.0411 | 0.16 040 0.70 0.84
—0.65 | 0.0115 | 0.23 0.53 0.80 0.89
1.0 | 3.000 22.48 1.93 | 0.0233 | 0.15 0.36 0.66 0.81
14.65 | 0.0615 | 0.11 0.23 0.36 0.44
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Table 5.3: Bias, associated standard error, and precision of change point estima-
tors when ¥ = 0.9 and ¢ = 0.4

Pr(|7t —7| <€)

) A k ARL; Bias | S.E. | e=0 1 3 5
0.5 | 0.1 | 2.701 53.32 19.03 | 0.1254 | 0.04 0.09 0.17 0.24
26.81 | 0.1369 | 0.04 0.09 0.19 0.26

02| 2859 | 7448 | 20.82 | 0.1317 | 004 0.09 017 0.24
58.21 | 0.2200 | 0.02 0.06 0.13 0.17

0.4 | 2.959 | 116.26 | 20.74 | 0.1399 | 0.04 0.09 0.18 0.24
107.86 | 0.3614 | 0.01 0.04 0.07 0.09

1.0 | 3.000 | 233.67 17.31 | 0.1411 | 0.04 0.10 0.19 0.26
230.96 | 0.7370 | 0.01 0.01 0.02 0.03

1.0 | 0.1 | 2.701 16.89 0.69 | 0.0558 | 0.12 0.27 0.45 0.57
—1.68 | 0.0338 | 0.11 0.27 0.49 0.63

0.2 | 2.859 19.73 1.67 | 0.0511 | 0.12 0.26 0.45 0.57
338 ( 0.0397 | 0.12 0.29 050 0.62

0.4 | 2959 | 30.66 2.47 | 0.0473 | 0.12 0.26 0.44 0.57
18.58 | 0.0853 | 0.09 0.20 0.32 040

1.0} 3.000 | 98.84 2.32 | 0.0428 | 0.13 028 0.46 0.59
94.96 | 0.3098 | 0.02 0.04 0.06 0.08

20|01 ] 2701 6.52 [ —1.38 | 0.0348 | 0.34 058 0.79 0.87
—4.08 | 0.0280 | 0.22 045 0.66 0.74

0.2 | 2.859 6.03 | —1.26 | 0.0341 | 0.34 0.58 0.79 0.88
—2.41 | 0.0165 | 0.29 0.53 0.73 0.82

0.4 | 2.959 6.68 | —0.79 ) 0.0312 ) 035 059 0.80 0.89
—-1.17 | 0.0107 | 0.35 0.60 0.80 0.89

1.0 | 3.000 | 20.38 0.31 | 0.0183 | 0.35 0.60 0.82 091
12.81 | 0.0599 | 0.18 0.30 0.42 0.49

3.0 0.1 ] 2701 412 | —0.96 | 0.0256 | 0.54 0.78 0.91 0.94
—4.35 | 0.0272 { 0.31 054 0.68 0.74

0.2 | 2.859 3.54 | —0.98 ) 0.0269 | 0.55 0.78 0.91 0.94
—2.70 | 0.0158 | 0.39 060 0.74 0.82

0.4 | 2.959 329 ( —-092 {00292 | 055 0.79 092 0.95
—-1.68 | 0.0092 | 0.45 065 0.82 0.90

1.0 | 3.000 6.25 ( —0.14 | 0.0154 | 0.56 0.81 0.94 0.97
—0.13 ;| 0.0104 | 044 069 0.88 094
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Table 5.4: Bias, associated standard error, and precision of change point estima-
tors when ¢ = 0.9 and ¢ = 0.8

Pr(|f — 7| <€)

é A k ARLs Bias| S.E. | e=0 1 3 5
0.5 01 | 2701 | 14241 67.87 | 0.3262 | 0.01 0.03 0.06 0.10
119.73 | 0.4302 | 0.01 0.03 0.06 0.09
0.2 | 2.859 | 185.79 76.92 | 0.3529 | 0.01 0.03 0.06 0.09
173.37 | 0.5768 | 0.01 0.02 0.04 0.06
0.4 | 2.959 | 239.61 83.71 | 0.3755 | 0.01 0.03 0.06 0.09
233.35 | 0.7516 | 0.01 0.01 0.03 0.04
1.0 | 3.000 | 322.86 85.06 | 0.3866 | 0.01 0.03 0.06 0.09
320.55 | 1.0167 | 0.00 0.01 0.02 0.02
1.0 | 0.1 | 2701 | 50.67 | 11.46 | 0.1259 | 0.03 0.08 0.17 0.23
2412 | 0.1276 | 0.04 0.10 0.20 0.28
0.2 | 2.859 69.90 13.80 | 0.1274 | 0.03 0.08 0.16 0.23
53.43 | 0.2050 | 0.03 0.07 0.13 0.19
0.4 | 2.959 | 110.19 16.52 | 0.1284 | 0.03 0.08 0.16 0.22
101.64 | 0.3406 | 0.01 0.04 0.07 0.10
1.0 | 3.000 | 226.05 18.38 | 0.1294 | 0.03 0.08 0.16 022
223.32 | 0.7127 | 0.01 0.01 0.02 0.03
20 ( 01 | 2.701 16.16 | —1.36 | 0.0802 | 0.10 0.23 0.40 0.51
—-1.78 | 0.0326 | 0.11 0.27 0.50 0.64
0.2 | 2.859 18.67 0.05 | 0.0744 | 0.10 0.22 0.39 0.51
2.58 [ 0.0361 | 0.12 030 0.52 0.65
0.4 | 2.959 28.53 2.00 | 0.0661 | 0.09 0.21 0.38 049
16.32 | 0.0780 | 0.09 0.21 0.35 043
1.0 { 3.000 92.85 5451 00544 | 0.09 020 036 047
88.86 | 0.2916 | 0.02 0.04 0.07 0.09
30101} 2701 9.10 | —2.47 | 0.0647 | 0.19 040 0.62 0.74
—-3.60 { 0.0287 | 0.16 037 0.61 0.73
0.2 | 2.859 9.09 | —1.87 | 0.0624 | 0.19 039 0.61 0.74
) -1.76 | 0.0177 | 0.21 046 070 0.81
0.4 | 2.959 11.55 | —0.49 | 0.0539 | 0.19 0.38 0.60 0.73
0.89 | 0.0207 | 0.24 048 070 0.81
1.0 | 3.000 39.66 2.80 | 0.0367 | 0.16 034 0.55 0.68
33.70 { 0.1217 | 0.07 0.13 0.20 0.24
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Table 5.1 to Table 5.4 give the following results. As expected, the out-of-
control ARL values show that small values of A are better for detecting small
shifts and large values of A are better for detecting large shifts, and the Shewhart
individuals chart (i.e., A = 1) based on the residuals is not effective for detecting
small and large shifts in the process mean. Additional discussion of the EWMA
chart’s performance for an AR(1) process plus an additional random error can
be found in Lu and Reynolds (1999).

The proposed MLE, 71, appears to be much less biased in estimating the
process change point than 7x, and the precision of 77, is better than that of 7x
for the overall range of values of ¥, ¢, and 6. When ¢ is small (§ < 1.0), two
estimators tend to overestimate the change point. As the level of autocorrelation
increases, the amount of the bias increases with increases in ARLs for small
0. However, for these small shifts, 7; yields better results than 7). For large
shift, it appears that 77 provides an accurate estimate of the change point. Note
that for A = 1, the values of #x are meaningless because 7y is based on the
information from the past observations in addition to the current observation, but
the Shewhart control statistic uses the current observation alone. The proposed
MLE can be applied when an out-of-control signal is given on any control chart
based on the residuals including Shewhart, CUSUM, and EWMA charts.

6. Conclusions

This paper has considered an autocorrelated process model which is an AR(1)
process plus an additional random error. We have proposed the MLE for the
change point of the mean of this model when a control chart based on the residuals
gives a signal. We have compared its performance with the built-in estimator in
EWMA charts. The results show that the performance of the MLE appears to
be better than the built-in estimator over the wide range of shifts.

Appendix : The MLE for the Change Point of the Process Mean

When there is a shift in £, the distribution of e; is N (0, 03) for t < 7 and
N(e(T) 6, 0,27) for t > 7 + 1. We assume that the values of 7 and § are unknown.
Given the residuals eq, ez, . . ., e, the log likelihood function can be expressed as

T

1 T
InL(r,0]e1,ez,...,e7) =A— 2—02 Zef-l— Z (es — ci(1)8)?|
i=1 =741
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where A is a constant not depending on 7 and 4.
If the change point 7 is known, the MLE for ¢ will be

T

> aln)e

8 i=7+1
6= T

> aln)?

1=7+1

Substituting this estimator into the log likelihood function, we get

T 2
T Y e
1 1 =
lnL(T|e1,ez,...,eT) __‘ZZ 53 3 ‘r;
> alr)
i=1+1
Thus the MLE for 7 is given by
(/T 2)
Z ci(t) e
> i=t+1
71, = argmax | - |
0<t<T ,
Y- )
i=t+1 )
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