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A Note Based on Multiparameter Discrete
Exponential Families in View of Cacoullos-type
Inequalities*

G. R. Mohtashami Borzadaran®

Abstract

In this note, we obtained results related to multiparameter discrete expo-
nential families on considering lattice or semi-lattice in place of N (Natural
numbers) in view of Cacoullos-type inequalities via the same arguments in
Papathanasiou (1990, 1993).
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1. Introduction

There is an extensive literature dealing with upper and lower bounds for the
variance of function of a random variable. The starting point dates back to the
result of Chernoff (1981), which gives a bound for the variance of an absolutely
continuous function (w.r.t. Lebesgue measure) of a normal random variable.
Chen (1982), Cacoullos (1982, 1989), Klaassen (1985) and Borovkov and Utev
(1984) obtained characterizations related to Chernoff-type inequalities. During
the last fifteen years or so, several papers have appeared on modified versions
or variants of the Chernoff inequality, and related characterizations. Variations
or extended versions of these latter results have been obtained by Cacoullos and
Papathanasiou (1985, 1986, 1989, 1995, 1997), Koicheva (1993), Alharbi and
Shanbhag (1996), Mohtashami Borzadaran and Shanbhag (1998) and others. Pa-
pathanasiou (1990, 1993) characterized a version of discrete exponential family
via Chernoff-type inequalities. We extend the idea of Papathanasiou (1990, 1993)
based on considering lattice or semi-lattice in place of N “Natural numbers”.
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2. Main Result

Let the distribution of a random vector X belongs to a multidimensional
family. Under some assumptions, a Cacoullos-type inequality for the variance
of g(X),X € NP considered by Papathanasiou (1990, 1993) for characterizing
an exponential family. Consider now the multiparameter discrete exponential
family:
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flz) <6, .6f ---0 k(z), z = (21,...,7,) € B*P, (2.1)
1 U2 P P

such that 6; >0,z € B* = {z : z = nf+ a,n € N} with 8 > 0, € R, where
N is N (natural numbers) or Z (integer numbers) or {0,1,2,...,n9}. Also, let g
be a real function defined on B*? as:

£ (z) = k(zy,zg,... ,xi—ll;i(’fi)_ By Tig1,--- ,90;»),
= z

(2.2)

where k(.) > 0 is a real-valued function and:

Azﬁg(_@) — g(xlam% ey Ti—1, T4 +ﬁ7xi+17 .. 'axp) - g(g), ,8 > 0. (23)

B
Suppose that
E||Afg,A8g,...,AB| < 0o (2.4)
and
Elltig,t59, ..., tpgll < oo, (2.5)
where ||.|| means the norm of the vector.
Note that if z; is the infimum of all points B*P | then k(z1,x9,...,2Zi—1,Z; —
B, Zit1, ..., 2p) = 0 and if z; is the supremum of all points in B*? then g(z1, x2,
ey Zim1, T + B, Zig1, ..., Zp) = g(z). The following assertions can be obtained

via the same arguments in Papathanasiou (1993) on considering lattice or semi-
lattice in place of N:

Theorem 2.1 Under the preceding conditions, let g(.) be as above, then

Cov{t}(X),9(X)} = BGE{AYg(X)}, X € B®,i=1,2,...,p. (2.6)
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Proof: Via the notation similar to those in Papathanasiou (1990), we have,

Cov{t}(X),9(X)) = > -+ Y _ti(z)9(x)f(z) — E(t}(X))E(9(X))

T Tp

un ¥
_ezz Z Zkyl,...,ypc(ol,..,9p)91ﬂ.92ﬁ---0,,

Xg(yl, e Yim1, Y + By Yi+1s- - Yp) — 0iE(g(X))
= 6;[BE(ATg(X)) + E(g(X))] — 8:;E(9(X))
= 9;8E(A (X)),

wfs

where z; = y; for j # 4 and x; = y; + B for j =i and

-1
c(61,...,8 [Z Za 0:7’2--655k(x)}

is the normalizing constant. O

Theorem 2.2 We have I}; = 86 1E{Aﬂt*(X)},i € B*®, 1,5=12,...,p,
such that I}; is the (3,7)t element of the p x p analogue of Fisher information
matriz I3y = (I};),i,5 = 1,2,...,p, where

1y = {{B SOV (IO O} 4 g

and fz(@) = f(.’L‘l,.'L'z,. sy Ti-1, T4 _ﬂaxi-l-la' --axp) fOT‘ i:j =12,.. <y D-

Proof: Using theorem 2.1 implies that,
E(t; (X)t5(X)) = B(t{(X)E(t;(X)) + Cov(ti(X),15(X))
= Oigj + ﬂalE(A?t;(i))

We have,

- <0} (10f00)

B e
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On noting that

E(?éﬁ;) = ;...%f(m,...,xi_hxi—ﬂ,ziﬂ,___,wp)

_ lz...zh(xl’“.’a:i_l’xi_ﬂ’xi—'_l"”’xp)f(xl T )
=T Y O %p

h(.’Bl, e ,:cp)

1 *
= e—iE(ti(K)),
and
fi(X) fi(X) ) A1, Tim1,Ti — By Tit1, - - -, Tp)
E(f(&) (X 00,; Z h(z1,...,%p)
h(:cl,. .. ,CUJ__l,:CJ - ,3, Tjt1y--- ,xp) f(.’L‘l, ,xp)

h(xl, e ,.'Ep)
1 * *
= 50 E(t; (X))-tj (X))

We obtain that,
= 07 E{AFE (X))

Theorem 2.3 (Papathanasiou (1990)): Let X = (X4,...,X,) have continu-
ous p-dimensional family with density f(z) = c(9)e?* K@) where § = (64, .. .,6,)
and g be any function such that

E(|Vg(X)|) < 00, E{|(VE(X) - 0)g(X)|} < oo,

and
E{|(VE(X) - 0)9(X)|} = E(Vg(X)),

then, we have,

V(g(X)) > E(Vg(X))I* ' E(Vg(X)), (2.7)
such that I*~1 is the inverse of
“«_ (g o - 0K (z)
I’ = (KU)’ Ki] - E[sz(X)]v kl] 6.’1316.’17_7

and I* is assumed to be non-singular. Equality holds in (2.7) iff g is linear in

0K (z)

kz(:L') = D.LK(.’II) = awi

=1,...,p.
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Proof: We have the multivariate Cauchy-Schwartz inequality (Cacoullos,
1989),

V(9(X)) > Cov(g(X), VK(X))[D(VK(X))] ™ Cov(9(X), VK(X))

and
Cov(g(X), k(X)) = E(9:(X)),
Cov(ki(X), kj(X)) = E(ki;(X)).
Hence, the proof is complete. =

Theorem 2.4 Under the preceding conditions (2.1),(2.2),(2.3),(2.4),(2.5),
let g be defined (arbitrary real- valued function) as above, then

Var[g(X)] > Eo{61A0%9,0:059, ..., 0,086} (Ix) ™
x Eg{0107g,00A89, ... ,6,A%g}, X € B*P (2.8)

with equality in (2.8) if and only if g is linear in t;(.), where Iy is the analogue
of the Fisher information matriz.

Proof: It is easy to follow the arguments in Papathanasiou (1990) as special
case of the above theorem with lattice case in place of the Natural numbers. U

Theorem 2.5 Let inequality (2.8) is satisfied for every real-valued function
g defined on B*P with equality for g linear in t;‘(g) where t3(z) is given by (2.2)
with E{t;(X)} = 05, 1 =1,2,...,p and (2.4) and (2.5) are satisfied. Then the
probability distribution of X is given by (2.1).

Proof: Following the proof of the theorem 2.2 in Papathanasiou (1990) by
setting g(z) = t;j(z) + Ag(z), we get the identity (2.6) for g(z) = sfl/ﬂ e sg"/ﬁ
and obtain the desired characterizations. a

Remark 2.1 The proof of the above assertions can be obtained via the same
argument in Papathanasiou (1990, 1993) with lattice case in place of the Natural

numbers. We can have Papathanasiou’s results on taking 3 =1 and n € N.
Remark 2.2 In (2.1), if h(z) = [, hf(z:), hi(z:) > 0, then f(z) is the
joint probability density function of n independent random variable with ¢ (z;) =
{Rr}(x; — B)}/{Rh}(z;)}, z; € B*. Here is an example of characterizations of the
bivariate bilateral power series via the above assertions that showed in Table 2.1:
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Table 2.1: Characterizations of the Bivariate Bilateral Polynomial Power Series
families

tH(z:) | () — q—(%—l)(%—2>--~(%—k+1> q—(—’z}—lx%—z)(%—s) q—<%—1)

g B D=2 (F k4D BPPD-BPFD BPPD-DQ BPPD-DN
g B -DEHF -G DQ-BPPD DQ-DQ DQ-DN
¢ FD DN-BPPD DN-DQ DN-DN

Note that in the above table BPPD, DQ and DN denote the bilateral polyno-
mial power series, discrete quartic and discrete normal distributions respectively,
and symbols such as DQ-DN are used to denote the bivariate discrete quartic-
discrete normal distributions; DQ-BPPD here stand for the bivariate discrete
quartic-bilateral power series distribution and so on. For details of them, see
Kemp (1997) and Mohtashami Borzadaran (2000).

3. Conclusions

In this note in view of Papthanasiou (1990, 1993), extended some ideas to
lattice or semi-lattice cases. Also obtained an example in lattice and semi-lattice
cases based on Papthanasiou (1990, 1993).
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