Properties of SBR Nanocomposites Reinforced with Organoclay/Carbon Black Dual Phase Fillers

카본 블랙/유기화 클레이로 보강된 SBR 나노 복합재료: 모폴로지와 기계적 물성

  • Kang, B.S. (Department of Chemical Engineering, Pusan National University) ;
  • Kim, W. (Department of Chemical Engineering, Pusan National University)
  • Published : 2007.03.31

Abstract

In this study, SBR (Styrene-butadiene rubber: solid content: 25 wt%) nanocomposites reinforced with carbon/organoclay(C18-MMT) were manufactured by a latex method. The SBR nanocomposites was made with the dual phase fillers. The mixing ratios, i.e. carbon black/C18-MMT, were 50/0, 49/1, 48/2, 47/3, 45/5, 44/6, 40/10. Total filler content of compounds was restricted to 50 phr. Cure characteristics and mechanical properties of SBR nanocomposites with carbon black and C18-MMT were evaluated. The SBR nanocomposites containing 49/1 ratio of carbon black/C18-MMT showed good dispersity and excellent values of ODR torque, tensile strength, modulus and tear energy. It was found that the improvement of the mechanical properties was mainly due to the reinforcing effect, i.e., the improvement of dispersion of silicates in the rubber matrix.

본 연구에서는 카본블랙과 유기화 클레이(C18-MMT) 로 보강된 SBR 나노 복합재료를 라텍스법(latex method)으로 제조하였다. 필러의 함량은 50 phr로 고정하였으며, 카본 블랙/C18-MMT의 함량비를 50/0, 49/1, 48/2, 47/3, 45/5, 44/6, 40/10 phr로 정하고 함량비에 따른 가황 특성 및 기계적 물성을 비교하였다. 각 컴파운드의 가황 특성 및 기계적 물성을 비교 평가한 결과 carbon black(49phr)/C18-MMT(1phr) 컴파운드가 ODR에서 가장 높은 최대 토크 값을 나타내었으며, 높은 인장 강도 및 모듈러스, 인열 에너지를 나타내었다. 이러한 기계적 물성 증가는 클레이의 박리 정도 및 분산도의 향상으로 인한 C18-MMT의 우수한 보강 효과 때문이라고 판단된다.

Keywords

References

  1. R. A. Vaia, H. Ishii, and F. P. Giannelis, 'Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates', Chem. Mater., 5, 1694 (1993) https://doi.org/10.1021/cm00036a004
  2. A. Okamoto and A. Usuki, 'The Chemistry of Polymer-Clay Hybrids', Mater. Sci. Eng., 3, 109 (1995) https://doi.org/10.1016/0928-4931(95)00110-7
  3. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, 'Mechanism of Clay Tactoid Exfoliation in EpoxyClay Nanocomposites', Chem. Mater., 7, 2144 (1995) https://doi.org/10.1021/cm00059a023
  4. L. Zhang, Y. Wang, Y. Sui, and D. Yu, 'Morphology and Mechanical Properties of Clay/StyreneButadiene Rubber Nanocomposites', J. Appl. Polym. Sci., 78, 1873 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  5. M. Pramanik, S. K. Srivastsva, B. K. Samantaray, and A. K. Bhowmick, 'Rubber-Clay Nanocomposite by Solution Blending', J. Appl. Polym. Sci., 87, 2216 (2003) https://doi.org/10.1002/app.11475
  6. Y. Wang, L. Zang, C. Tang, and D. Yu, 'Preparation and Characterization of Rubber-Clay Nanocomposite', J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  7. R. E. Grim, 'Clay Mineralogy', McGraw-Hill, New York, 1968
  8. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza and J. E. Mark, 'Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber', Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  9. T. Ryo, N. Kensuke, C. Yoshiki, 'Synthesis of poly (N,N-dimethylacrylamide)/silica gel polymer hybrids by in situ polymerization method', Polymer, 30, 60 (1998) https://doi.org/10.1295/polymj.30.60
  10. S. Varghese, J. Karger-Kocsis, 'Melt-Compounded Natural Rubber Nanocomposites with Pristine and Organophilic Layered Silicates of Natural and Synthetic Origin', J. Appl. Polym. Sci., 91, 813 (2004) https://doi.org/10.1002/app.13173
  11. Y-P Wu, Q-X Jia, D-S Yu, L-Q Zhang, 'Structure and Properties of Nitrile Rubber (NBR)-Clay Nanocomposites by Co-coagulating NBR Latex and Clay Aqueous Suspension', J. Appl. Polym. Sci., 89, 3855 (2003) https://doi.org/10.1002/app.12568
  12. Madhuchhanda Maiti, Susmita Sadhu, Anil K. Bhowmick, 'Effect of Carbon Black on Properties of Rubber Nanocomposites', J. Appl. Polym. Sci., 96, 443 (2005) https://doi.org/10.1002/app.21463
  13. Sung-Seen Choi, Byung-Ho Park, Wan Soo Kim, Wan Doo Kim, 'Influence of Silane Coupling Agent on Retraction Behaviors of NR Vulcanizates Reinforced with Carbon Black and Clay', Elastomer, 40, 112 (2005)
  14. J. H. Kang, R. S. kang, W. Kim, and U. R. Cho, 'Natural Rubber-Clay Nanocomposites by a latex method: Mophology and Mechanical Properties', Elastomer, 41, 27 (2006)
  15. Susmita Sadhu and A. K, Bhowmick, 'Effect of Chain Length of Amine and Nature and Loading of Clay on Styrene-Butadiene Rubber-Clay Nanocom-posites', Ruhher Chem. Technol., 76, 860 (2003) https://doi.org/10.5254/1.3547777
  16. Jin-Tae Kim, Taeg-Su Oh, and Dong-Ho Lee, 'Preparation and characteristics of nitrile rubber(NBR) nanocomposites based on organophilic layered clay', Polymer, 52, 1058 (2003)
  17. R. Fan, Y. Zang, C. Huang, 'Effect of Crosslink Structures on Dynamic Mechanical Properties of Natural Rubber', J. Appl. Polym. Sci., 81, 710 (2001) https://doi.org/10.1002/app.1488
  18. S. Bandyopadhyay, D. K. Tripathy, P. P. De and S. K. De, 'Effect of (3-aminopropyl) triethoxysilane on chemorheological behavior of carboxylated nitrile rubber in presence of surface oxidized ISAF carbon black', J. Appl. Polym. Sci., 63, 1833 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1833::AID-APP16>3.0.CO;2-Z