Production and Characterization of Monoclonal and Recombinant Antibodies Against Antimicrobial Sulfamethazine

  • Yang, Zheng-You (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Shim, Won-Bo (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Min-Gon (Laboratory of Integrative Biotechnology, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Kyu-Ho (Department of Environmental Engineering and Biotechnology, Hankuk University of Foreign Studies) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Kwang-Yup (Department of Food Science and Technology, Chungbuk University) ;
  • Kim, Cheol-Ho (Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University and NRL-Glycobiology) ;
  • Ha, Sang-Do (Department of Food Science and Technology, Chung-Ang University) ;
  • Chung, Duck-Hwa (Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • Published : 2007.04.30

Abstract

A monoclonal antibody (mab) against the antimicrobial sulfamethazine was prepared and characterized by an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA). Sulfamethazine in the range of 0.2 and 45ng/ml could be determined with the mab by IC-ELISA. cDNAs encoding a variable heavy chain and variable light chain of the mab were cloned to produce recombinant antibodies using phage display technology. Following phage rescue and three rounds of panning, a single-chain variable fragment (scFv) antibody with high sulfamethazine-binding affinity was obtained. ELISA analysis revealed that scFv antibody and parent mab showed similar, but not identical, characteristics. The $IC_{50}$ value by IC-ELISA with scFv antibody was 4.8ng/ml, compared with 1.6ng/ml with the parent mab. Performances of the assays in the presence of milk matrix were compared; the mab-based assay was less affected than the scFv-based assay. Sixty milk samples were analyzed by mab-based IC-ELISA, and four samples were sulfamethazine positive; these results were favorably correlated with those obtained by HPLC.

Keywords

References

  1. Abian, J., M. I. Churchwell, and W. A. Korfmacher. 1993. High-performance liquid chromatography-thermospray mass spectrometry of ten sulfonamide antibiotics. J. Chromatogr. A 629: 267-276 https://doi.org/10.1016/0021-9673(93)87040-S
  2. Anna, Y. K., J. H. Park, S. A. Eremin, S. J. Kang, and D. H. Chung. 2003. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of the organophosphorus pesticide parathion-methyl. J. Agric. Food Chem. 51: 1107-1114 https://doi.org/10.1021/jf025801v
  3. Choi, J. Y., S. H. Lee, C. Y. Park, W. D. Heo, J. C. Kim, M. C. Kim, W. S. Chung, B. C. Moon, Y. H. Chang, C. Y. Kim, J. H. Yoo, J, C. Koo, H. M. Ok, S. W. Chi, S. E. Ryu, S. Y. Lee, S. Y. Lee, C. O. Lim, and M. J. Cho. 2002. Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library.. J. Biol. Chem. 277: 21630-21638 https://doi.org/10.1074/jbc.M110803200
  4. Fodey, T. L., S. R. Crooks, C. T. Elliot, and W. J. McCaughey. 1997. Comparison of porcine urine and bile as matrices to screen for the residues of two sulfonamides using a semi-automated enzyme immunoassay. Analyst 122: 165-168 https://doi.org/10.1039/a606471j
  5. Fuh, M. R. S. and S. A. Chan. 2001. Quantitative determination of sulfonamide in meat by liquid chromatography-electrospray-mass spectrometry. Talanta 55: 1127-1139 https://doi.org/10.1016/S0039-9140(01)00524-0
  6. Furusawa, N. 2000. Simplified determining procedure for routine residue monitoring of sulphamethazine and sulphadimethoxine in milk. J. Chromatogr. A 898: 185 -191 https://doi.org/10.1016/S0021-9673(00)00843-8
  7. Galfre, G., S. C. Howe, C. Milstein, G. W. Butcher, and J. C. Howard. 1977. Antibodies to major histocompatability antigens produced by hybrid cell lines. Nature 266: 550-552 https://doi.org/10.1038/266550a0
  8. Goodrow, M. H. and B. D. Hammock. 1998. Hapten design for compound-selective antibodies: ELISA for environmentally deleterious small molecules. Anal. Chim. Acta 376: 83-91 https://doi.org/10.1016/S0003-2670(98)00433-4
  9. Hudson, J. S., J. McCartney, J. Tai, C. M. Hartshorn, D. Jin, F. Warren, P. Keck, and H. Opperman. 1993. Medical applications of single-chain antibodies. Int. Rev. Immunol. 10: 195-217 https://doi.org/10.3109/08830189309061696
  10. Kabat, E., T. Wu, M. Rei-Miller, H. Perry, K. Gottesman, and C. Foeller. 1991. Sequences of Proteins of Immunological Interest, 5th Ed. U.S. Department of Health and Human Service, Public Service, National Institute of Health, Washington, DC
  11. Long, A. R., L. C. Hsieh, M. S. Malbrough, C. R. Short, and S. A. Barker. 1990. Multi-residue method for the determination of sulfonamides in pork tissue. J. Agric. Food Chem. 38: 423-426 https://doi.org/10.1021/jf00092a018
  12. Marks, J. D., H. R. Hoogenboom, T. P. Bonnert, J. McCafferty, A. D. Griffiths, and G. Winter. 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581-597 https://doi.org/10.1016/0022-2836(91)90498-U
  13. McCarthy, B. J. and A. S. Hill. 2001. Altering the fine specificity of an anti-Legionella single chain antibody by a single amino acid insertion. J. Immunol. Methods 251: 137-149 https://doi.org/10.1016/S0022-1759(00)00319-7
  14. Milan, F., K. Vladimir, D. Anping, and C. Steven. 1999. Determination of sulphadimidine residues in milk, plasma, urine and edible tissues by sensitive ELISA. Food Agr. Immunol. 11: 339-349 https://doi.org/10.1080/09540109999726
  15. Moreno, M. J., A. Abad, and A. Montoya. 2001. Production of monoclonal antibodies to the N-methy1carbamate pesticide propoxur. J. Agric. Food Chem. 49: 72-78 https://doi.org/10.1021/jf0009596
  16. Patricia, C. and V. P. Carlos. 2002. Rapid and sensitive screening of sulfamethazine in porcine urine with an enzyme-linked immunosorbent assay and a field-portable immunofiltration assay. J. Food Protect. 65: 820-827 https://doi.org/10.4315/0362-028X-65.5.820
  17. Pluckthun, A. and P. Pack. 1997. New protein engineering approaches to multivalent and bispecific antibody fragments. A review. Immunotechnology 3: 83-105 https://doi.org/10.1016/S1380-2933(97)00067-5
  18. Renson, C., G. Degand, and G. M. Rogister. 1993. Determination of sulfamethazine in animal tissues by enzyme immunoassay. Anal. Chim. Acta 275: 323-328 https://doi.org/10.1016/0003-2670(93)80309-9
  19. Schneider, P. and B. D. Hammock. 1992. Influence of the ELISA format and the hapten enzyme conjugate on the sensitivity of an immunoassay for the s-triazine herbicides using monoclonal antibodies. J. Agric. Food Chem. 40: 525-530 https://doi.org/10.1021/jf00015a033
  20. Schulze, R. A., R. E. Kontermann, I. Queitsh, S. Dubel, and E. K. F. Bautz. 1994. Thiophilic adsorption chromatography of recombinant single-chain antibody fragments. Anal. Biochem. 220: 212-214 https://doi.org/10.1006/abio.1994.1322
  21. Song, J. W., J. S. Won, Y. C. Lee, and M. H. Choe. 2006. Increased refolding yield of disulfide bond bridged fab-toxin homodimers by the insertion of CH3 domains. J. Microbiol. Biotechnol. 16: 1104-1110
  22. Valerie, B. R. 1999. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry. J. Chromatogr. B 723: 127-137 https://doi.org/10.1016/S0378-4347(98)00548-9
  23. World Health Organization. 1989. WHO Technical Report Series 788: 32-40
  24. Winter, G. and C. Milstein. 1991. Man-made antibodies. Nature 349: 5-7
  25. Yoo, M. H., J. S. Won, Y. H. Lee, and M. H. Choe. 2006. Increase of spacer sequence yields higher dimer $(Fab-Spacer-Toxin)_{2}$ formation. J. Microbiol. Biotechnol. 15: 1097-1103
  26. Yuan, Q., R. C. James, H. Zhou, E. L. Jonhn, J. P. James, and L. P. Hart. 1997. Molecular cloning, expression, and characterization of a functional single-chain Fv antibody to the mycotoxin zearalenone. Appl. Environ. Microbiol. 63: 203-269