DOI QR코드

DOI QR Code

Synthesis of Tungsten Heavy alloy Nanocomposite Powder by Ultrasonic-milling Process

초음파 밀링 공정을 이용한 텅스텐 중합금 나노복합분말의 제조

  • Lee, Seung-Chul (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Chang-Woo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Jung, Sung-Soo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Cha, Berm-Ha (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
  • 이승철 (한양대학교 금속재료공학과) ;
  • 이창우 (한양대학교 금속재료공학과) ;
  • 정성수 (한양대학교 금속재료공학과) ;
  • 차범하 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Published : 2007.04.28

Abstract

Ultrasonic-milling of metal oxide nanopowders for the preparation of tungsten heavy alloys was investigated. Milling time was selected as a major process variable. XRD results of metal oxide nanopowders ultrasonic-milled for 50 h and 100 h showed that agglomerate size reduced with increasing milling time and there was no evidence of contamination or change of composition by impurities. It was found that nanocomposite powders reduced at $800^{\circ}C$ in a hydrogen atmosphere showed a chemical composition of 93.1W-4.9Ni-2.0Fe from EDS analysis. Hardness of sintered part using 50 h and 100 h powder samples was 399 Hv and 463 Hv, respectively, which is higher than the that of commercial products (330-340 Hv).

Keywords

References

  1. S. Eroglu, T. Baykara: J. Mater. Proc. Technol., 103 (2000) 288 https://doi.org/10.1016/S0924-0136(00)00499-4
  2. K. S. Churn and D. N. Yoon: Powder Metall., 22 (1979) 175 https://doi.org/10.1179/pom.1979.22.4.175
  3. K. T. Ramesh and R. S. Coates: Metall. Trans. A, 23 (1992) 2625 https://doi.org/10.1007/BF02658066
  4. H. S. Song, J. W. Noh, W. H. Beak, and S. W. Lee: J. Mater. Proc. Technol., 63 (1997) 618 https://doi.org/10.1016/S0924-0136(96)02695-7
  5. H. J. Ryu, S. H. Hong, and W. H. Baek: Mater. Sci. Eng., A291 (2000) 91 https://doi.org/10.1016/S0921-5093(00)00968-0
  6. C. C. Koch, Y. S. Cho: Nanostructered Mater., 1 (1992) 207 https://doi.org/10.1016/0965-9773(92)90096-G
  7. E. S. Yoon : Ph.D Thesis, Hanyang Univ. (2002)
  8. P. M. Kanthale, P. R. Pandit, A. M. Wilhelm: Ultrasonics Sonochemistry 12 (2005) 441-452 https://doi.org/10.1016/j.ultsonch.2004.05.017
  9. T. H. Kim, J. H. Yu and J. S. Lee: Nanostruct.Mater., 9 (1997) 213 https://doi.org/10.1016/S0965-9773(97)00056-1
  10. D. S. Venables and M. E. Brown: Thermochim. Acta, 285 (1996) 361 https://doi.org/10.1016/0040-6031(96)02951-6
  11. A. K. Basu and F. R. Sale: J. Mater. Sci., 13 (1978) 2703 https://doi.org/10.1007/BF02402759
  12. P. Walkden, J. N. Albiston and F. R. Sale: Powder Metall., 28 (1985) 36 https://doi.org/10.1007/BF01171805