Open Boundary Conditions in Parabolic Approximation Model

포물형 근사식 수치모형의 투과 경계조건

  • 서승남 (한국해양연구원 연안개발연구본부) ;
  • 이동영 (한국해양연구원 연안개발연구본부)
  • Published : 2007.04.30

Abstract

Most of parabolic approximation models employ a relatively limited open boundary condition in which there is no depth variation in the longshore direction outside of the computation domain so that Snell's law may be presumed to hold. Existing Kirby's condition belongs to this category and in the paper both modified Kirby's method and Dirichlet boundary condition are presented in detail and numerical results of three methods were shown. Judging from computation to wave propagations over a circular shoal in a constant depth, the method based on present Dirichlet boundary condition with fictitious numerical adjusting regions in both sides of the computation domain gives the least distorted amplitude ratio distribution.

대부분의 포물형 수치모형은 경계 외측의 수심이 해안방향으로 변하지 않는 Snell 법칙을 적용할 수 있는 조건으로 국한한다. 여기에는 기존의 Kirby 방법이 있으며 본 논문에서는 이를 수정한 방법 그리고 Dirichlet 경계조건에 대해 자세히 기술하고 이에 대한 수치실험 결과를 제시하였다. 일정 수심 위에 존재하는 원형 천퇴에 대한 수치실험 결과 계산영역 좌우에 가상 수치 조정구역을 두고 본 Dirichlet 경계조건을 적용한 경우가 파고비의 분포가 가장 작게 왜곡되는 것으로 나타났다.

Keywords

References

  1. 서승남, 이종찬 (2006). 수정 완경사 파랑식에 대한 포물형 근사식 모형, 한국 해안.해양공학회, 18(4), 360-371
  2. Berkhoff, J.C.W. (1972). Computation of combined refractiondiffraction. Proc. 13th Coastal Eng. Conf., 1, 471-490
  3. Booij, N. (1981). Gravity waves on water with non-uniform depth and current. Report 81-1, Dept. of Civil Eng., Delft Univ. Technology
  4. Chawla, A., Zkan-Haller, H.T. and Kirby, J.T. (1998). Spectral model for wave transformation over irregular bathymetry, Journal of Waterway, Port, Coastal and Ocean Engineering, 124(4), 189-198 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(189)
  5. Dean, R.G. and Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists, Prentice-Hall, Englewood Cliffs, New Jersey
  6. Greenberg, M.D. (1978). Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey
  7. Haberman, R. (2004). Applied Partial Differential Equations, 4th ed., Pearson Education, Inc., Upper Saddle River, New Jersey
  8. Kirby, J.T. (1986a). Higher order approximations in the parabolic equation method for water waves, J. Geophys. Res., 91, 933-952 https://doi.org/10.1029/JC091iC01p00933
  9. Kirby, J.T. (1986b). Rational approximations in the parabolic equation method for water waves, Coastal Eng., 10, 355-378 https://doi.org/10.1016/0378-3839(86)90021-9
  10. Kirby, J.T. (1986c). Open boundary condition in parabolic equation method, Journal of Waterway, Port, Coastal and Ocean Engineering, 112(3), 460-465 https://doi.org/10.1061/(ASCE)0733-950X(1986)112:3(460)
  11. Kirby, J.T. and Dalrymple, R.A. (1984). Verification of a parabolic equation for propagation of weakly-nonlinear waves, Coastal Eng. 8, 212-232
  12. Kirby, J.T. and Dalrymple, R.A. (1986). Approximate model for nonlinear dispersion in monochromatic wave propagation, Coastal Eng., 9, 545-561 https://doi.org/10.1016/0378-3839(86)90003-7
  13. Kirby, J.T. and Dalrymple, R.A. (1994). Combined Refraction/ Diffraction Model REF/DIF 1, Version 2.5. Documentation and User's Manual, Research Report No. CACR-94-22, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark
  14. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986). Numerical Recipes: The Art of Scientific Computing, Cambridge University Press
  15. Radder, A.C. (1979). On the parabolic equation method for water-wave propagation, J. Fluid Mech., 95, 159-176 https://doi.org/10.1017/S0022112079001397
  16. Panchang, V.G., Pearce, B.R., Wei, G. and Briggs, M.J. (1990). Numerical simulation of irregular wave propagation over shoal, Journal of Waterway, Port, Coastal and Ocean Engineering, 116(3), 324-340 https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(324)
  17. Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound, Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), 269-284 https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  18. Vincent, C.L. and Briggs, M.J. (1999). Distribution of extreme waves behind a shoal, Journal of Waterway, Port, Coastal and Ocean Engineering, 125(1), 54-56 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:1(54)