사람 유방암세포주 MCF-7에 Paclitaxel 처치 후 종양영상용 방사성의약품 섭취 변화에 대한 시험관내 연구

In Vitro Study of Tumor Seeking Radiopharmaceutical Uptake by Human Breast Cancer Cell Line MCF-7 after Paclitaxel Treatment

  • 최준영 (성균관의대 삼성서울병원 핵의학과) ;
  • 최용 (성균관의대 삼성서울병원 핵의학과) ;
  • 최연성 (성균관의대 삼성서울병원 핵의학과) ;
  • 이경한 (성균관의대 삼성서울병원 핵의학과) ;
  • 김병태 (성균관의대 삼성서울병원 핵의학과)
  • Choi, Joon-Young (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Choi, Yong (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Choe, Yearn-Seong (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyung-Han (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Byung-Tae (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 발행 : 2007.10.31

초록

목적 : 여러 종양영상용 방사성의약품이 암환자에서 치료후 반응을 보는 데 사용되고 있다. 이 연구에서는 paclitaxel 노출 시간에 따른 여러 종양영상용 방사성의약품의 유방암세포 섭취양상을 paclitaxel 노출 48시간까지 생존종양세포 수와 비교하여 알아보았다. 대상 및 방법 : F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, Tc-99m-tetrofosmin의 5가지 종양영상용 방사성의약품의 MCF-7 유방암세포에서의 세포섭취를 알아보았다. DMSO 노출 대조군, 다양한 paclitaxel 노출시간을 가지는 5가지의 실험군(노출시간 2시간, 6시간, 12시간, 24시간, 48시간)의 총 6가지 조건에서 종양영상용 방사성의약품을 60분간 섭취시킨 뒤 섭취율을 구하였다. Paclitaxel은 10 nM과 100 nM의 2가지 농도를 사용하였다. 결과 : 10 nM의 paclitaxel은 노출 48시간까지 MCF-7 세포의 살아 있는 세포의 비율을 약 75% 정도로 감소시켰지만, 종양세포의 5가지 종양영상용 방사성의약품 섭취는 대조군과 비교시 유의하게 감소하지 않았다. 100 nM의 paclitaxel은 노출 48시간까지 MCF-7 세포의 살아 있는 세포의 비율을 약 55% 정도로 감소시켰지만, 종양세포의 5가지 종양영상용 방사성의약품 섭취는 대조군과 비교시 유의하게 증가하였다. 결론 : MCF-7 유방암세포주에서 종양영상용 방사성의약품인 F-18-FDG, C-11-methionine, Tl-201, Tc-99m-MIBI, Tc-99m-tetrofosmin의 섭취율은 paclitaxel 투여 후 48시간까지 생존 종양세포 수의 감소를 반영하지 못한다.

Purpose: This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. Materials and Methods: F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Results: Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. Conclusion: The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h.

키워드

참고문헌

  1. Maini CL, Tofani A, Sciuto R, Semprebene A, Cavaliere R, Mottolese M, et al. Technetium-99m-MIBI scintigraphy in the assessment of neoadjuvant chemotherapy in breast carcinoma. J Nucl Med 1997;38:1546-51
  2. Brucher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001;233:300-9 https://doi.org/10.1097/00000658-200103000-00002
  3. Chesnay E, Babin E, Constans JM, Agostini D, Bequignon A, Regeasse A, et al. Early response to chemotherapy in hypopharyngeal cancer: assessment with 11C-methionine PET, correlation with morphologic response, and clinical outcome. J Nucl Med 2003; 44:526-32
  4. Shih CM, Hsu WH, Huang WT, Wang JJ, Ho ST, Kao A. Usefulness of chest single photon emission computed tomography with technetium-99m methoxyisobutylisonitrile to predict taxol based chemotherapy response in advanced non-small cell lung cancer. Cancer Lett 2003;199:99-105 https://doi.org/10.1016/S0304-3835(03)00335-5
  5. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Changlai SP, Lee JK. Paclitaxel-based chemotherapy for non-small cell lung cancer: predicting the response with 99mTc-tetrofosmin chest imaging. J Nucl Med 2001;42:17-20
  6. Murata H, Kusuzaki K, Takeshita H, Hirata M, Hashiguchi S, Emoto K, et al. Assessment of chemosensitivity in patients with malignant bone and soft tissue tumors using thallium-201 scintigraphy and doxorubicin binding assay. Anticancer Res 2000;20:3967-70
  7. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, et al. Increased uptake of the apoptosis-imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 2002;8:2766-74
  8. Haberkorn U, Reinhardt M, Strauss LG, Oberdorfer F, Berger MR, Altmann A, et al. Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992;33:1981-7
  9. Haberkorn U, Oberdorfer F, Klenner T, Strauss LG, Stohr M, Wallich R, et al. Metabolic and transcriptional changes in osteosarcoma cells treated with chemotherapeutic drugs. Nucl Med Biol 1994;21:835-45 https://doi.org/10.1016/0969-8051(94)90163-5
  10. Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, et al. Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 1994;35:1842-50
  11. Slosman DO, Pugin J. Lack of correlation between tritiated deoxyglucose, thallium-201 and technetium-99m-MIBI cell incorporation under various cell stresses. J Nucl Med 1994;35:120-6
  12. Yang DJ, Azhdarinia A, Wu P, Yu DF, Tansey W, Kalimi SK, et al. In vivo and in vitro measurement of apoptosis in breast cancer cells using 99mTc-EC-annexin V. Cancer Biother Radio 2001; 16:73-83 https://doi.org/10.1089/108497801750096087
  13. Olah E, Csokay B, Prajda N, Kote-Jarai Z, Yeh YA, Weber G. Molecular mechanisms in the antiproliferative action of taxol and tiazofurin. Anticancer Res 1996;16:2469-77
  14. Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC. Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemoth Pharm 2001;47:444-50 https://doi.org/10.1007/s002800000265
  15. Chang YF, Renshaw HW. Pasteurella haemolytica leukotoxin: comparison of 51chromium-release, trypan blue dye exclusion, and luminol-dependent chemiluminescence-inhibition assays for sensitivity in detecting leukotoxin activity. Am J Vet Res 1986;47:134-8
  16. Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 1996;236:302-8 https://doi.org/10.1006/abio.1996.0171
  17. Chung JK, Lee YJ, Kim C, Choi SR, Kim M, Lee K, et al. Mechanisms related to [18F]fluorodeoxyglucose uptake of human colon cancers transplanted in nude mice. J Nucl Med 1999; 40:339-46
  18. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40:556-65
  19. Tian M, Zhang H, Nakasone Y, Mogi K, Endo K. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur J Nucl Med Mol I 2004;31:5-12 https://doi.org/10.1007/s00259-003-1316-9
  20. Tohma T, Okazumi S, Makino H, Cho A, Mochiduki R, Shuto K, et al. Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterol 2005;52:486-90
  21. Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med 2005;46:675-82
  22. Rozental JM, Levine RL, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment. A positron emission tomographic study. Arch Neurol 1989;46:1302-7 https://doi.org/10.1001/archneur.1989.00520480044018
  23. Haberkorn U, Altmann A, Kamencic H, Morr I, Traut U, Henze M, et al. Glucose transport and apoptosis after gene therapy with HSV thymidine kinase. Eur J Nucl Med 2001;28:1690-6 https://doi.org/10.1007/s002590100644
  24. Ishiwata K. Vaalburg W. Elsinga PH. Paans AM. Woldring MG. Comparison of L-[1-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med 1988;29:1419-27
  25. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo?. J Nucl Med 1993;34:1936-43
  26. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol I 2002;29:176-82 https://doi.org/10.1007/s00259-001-0690-4
  27. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 1993;34:773-9
  28. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996;37:1551-6
  29. Sato T, Indo H, Kawabata Y, Kobayashi T, Suenaga S, Iwashita Y, et al. Thallium-201 chloride (Tl-201) accumulation and Na+/K+-ATPase expression in tumours of the head and neck. Dentomaxillofac Rad 2005;34:212-7 https://doi.org/10.1259/dmfr/50773431
  30. Del Vecchio S, Salvatore M. 99mTc-MIBI in the evaluation of breast cancer biology. Eur J Nucl Med Mol I 2004;31(Suppl 1):S88-96 https://doi.org/10.1007/s00259-004-1530-0
  31. Furuta M, Nozaki M, Kawashima M, Iimuro M, Okayama A, Fukushima M, et al. Monitoring mitochondrial metabolisms in irradiated human cancer cells with 99mTc-MIBI. Cancer Lett 2004; 212:105-11 https://doi.org/10.1016/j.canlet.2004.03.002
  32. Fuster D, Vinolas N, Mallafre C, Pavia J, Martin F, Pons F. Tetrofosmin as predictors of tumour response. Q J Nucl Med 2003; 47:58-62
  33. Fukumoto M, Kurohara A, Yoshimura N, Yoshida D, Akagi N, Yoshida S. Relationship between ATP synthesis and 201Tl uptake in transformed and non-transformed cell lines. Nucl Med Commun 1998;19:1169-75 https://doi.org/10.1097/00006231-199812000-00009
  34. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol I 2004;31:1659-72 https://doi.org/10.1007/s00259-004-1687-6
  35. Yeo JS, Lim SJ, Oh SJ, Ryu JS, Yun MK, Moon DH. Comparison of F-18 FLT uptake with F-18 FDG for early evaluation of chemotherapy response in human cancer cell lines. J Nucl Med 2003;44:81P [Abstract]
  36. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 2005;65:4202-10 https://doi.org/10.1158/0008-5472.CAN-04-4008
  37. Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 1995;36:1625-32
  38. Minn H, Clavo AC, Wahl RL. Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol 1996;23:941-6 https://doi.org/10.1016/S0969-8051(96)00134-5
  39. Clavo AC. Wahl RL. Effects of hypoxia on the uptake of tritiated thymidine, L-leucine, L-methionine and FDG in cultured cancer cells. J Nucl Med 1996;37:502-6
  40. Kinuya S, Yokoyama K, Li XF, Bai J, Watanabe N, Shuke N, et al. Hypoxia-induced alteration of tracer accumulation in cultured cancer cells and xenografts in mice: implications for pre-therapeutic prediction of treatment outcomes with 99mTc-sestamibi, 201Tl chloride and 99mTc-HL91. Eur J Nucl Med Mol I 2002;29:1006-11 https://doi.org/10.1007/s00259-002-0846-x
  41. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972-80