F-18 FDG PET/CT에서 양성과 악성 근골격 종양의 감별진단 - 수신자 판단특성곡선을 이용한 maxSUV의 절단값 결정

The Differentiation of Malignant and Benign Musculoskeletal Tumors by F-18 FDG PET/CT Studies - Determination of maxSUV by Analysis of ROC Curve

  • 공은정 (영남대학교 의과대학 핵의학교실) ;
  • 조인호 (영남대학교 의과대학 핵의학교실) ;
  • 천경아 (영남대학교 의과대학 핵의학교실) ;
  • 원규장 (영남대학교 의과대학 내과학교실) ;
  • 이형우 (영남대학교 의과대학 내과학교실) ;
  • 최준혁 (영남대학교 의과대학 병리학교실) ;
  • 신덕섭 (영남대학교 의과대학 정형외과학교실)
  • Kong, Eun-Jung (Departments of Nuclear Medicine, Yeungnam University College of Medicine) ;
  • Cho, Ihn-Ho (Departments of Nuclear Medicine, Yeungnam University College of Medicine) ;
  • Chun, Kyung-Ah (Departments of Nuclear Medicine, Yeungnam University College of Medicine) ;
  • Won, Kyu-Chang (Departments of Endocrinology, Yeungnam University College of Medicine) ;
  • Lee, Hyung-Woo (Departments of Endocrinology, Yeungnam University College of Medicine) ;
  • Choi, Jun-Heok (Departments of Pathology, Yeungnam University College of Medicine) ;
  • Shin, Duk-Seop (Departments of Orthopedics, Yeungnam University College of Medicine)
  • 발행 : 2007.12.31

초록

목적: F-18 FDG PET은 근골격계 종양에서 양성과 악성병변을 감별하는 유용성에 대하여 다양한 결과가 보고되고 있다. 저자들은 F-18 FDG를 이용한 PET/CT로 근골격계 종양의 maxSUV를 분석하고 비교하여 유용성을 알아보았다. 대상 및 방법: 치료 전 46개 병소(연부 조직 종양 양성/악성 : 11/12, 골종양 양성/악성 9/14)에 대하여 F-18 FDG PET/CT를 시행하였으며, 조직학적 검사로 확진하였다. 악성과 양성을 구분하는 maxSUV 절단값은 연부 조직 종양에서는 4.1, 골종양에서는 3.05로 하였다. 결과: 연부 조직 종양에서 양성(R=11; maxSUV $3.4{\pm}3.2$)과 악성(n=12; maxSUV $14.8{\pm}12.2$) 간에 maxSUV는 통계학적으로 유의하게 (p<0.001) 차이가 있었다. 민감도와 특이도는 각각 83%, 91%였다. 그러나 골종양에서는 양성 종양(n=9; maxSUV $5.4{\pm}4.0$)과 악성 골종양(n=14; maxSUV $7.3{\pm}3.2$) 간에 통계학적으로 유의한 차이를 보이지 않았다. 연부 조직 종양에서는 결절성 근막염이 위양성으로 나타났고(maxSUV=12.4) 골종양에서는 섬유성 골이형성증과 랑게르한스세포 조직구증식증 2예 및 골모세포종이 있었다. 결론: 연부 조직 종양에서 maxSUV는 양성과 악성을 감별하는데 유용하였다. 그러나 골종양의 경우에는 maxSUV가 낮은 경우에는 악성을 배제할 수 있었으나, maxSUV가 높은 경우에는 조직학적으로 조직구나 섬유모세포 등이 포함된 종양의 감별진단을 고려하여야한다.

Purpose: We evaluated the standard uptake value (SUV) of F-18 FDG at PET/CT for differentiation of benign from malignant tumor in primary musculoskeletal tumors. Materials and Methods: Forty-six tumors (11 benign and 12 malignant soft tissue tumors, 9 benign and 14 malignant bone tumors) were examined with F-18 FDG PET/CT (Discovery ST, GE) prior to tissue diagnosis. The maxSUV(maximum value of SUV) were calculated and compared between benign and malignant lesions. The lesion analysis was based on the transverse whole body image. The maxSUV with cutoff of 4.1 was used in distinguishing benign from malignant soft tissue tumor and 3.05 was used in bone tumor by ROC curve. Results: There was a statistically significant difference in maxSUV between benign (n=11; maxSUV $3.4{\pm}3.2$) and malignant (n=12; maxSUV $14.8{\pm}12.2$) lesions in soft tissue tumor (p=0.001). Between benign bone tumor (n=9; maxSUV $5.4{\pm}4.0$) and malignant bone tumor (n=14; maxSUV $7.3{\pm}3.2$), there was not a significant difference in maxSUV. The sensitivity and specificity for differentiating malignant from benign soft tissue tumor was 83% and 91%, respectively. There were four false positive malignant bone tumor cases to include fibrous dysplasia, Langerhans-cell histiocytosis (n=2) and osteoid osteoma. Also, one false positive case of malignant soft tissue tumor was nodular fasciitis. Conclusion: The maxSUV was useful for differentiation of benign from malignant lesion in primary soft tissue tumors. In bone tumor, the low maxSUV correlated well with benign lesions but high maxSUV did not always mean malignancy.

키워드

참고문헌

  1. Cancer Incidence in Five Continents Vol. 8. International Agency for Research on Cancer Web site. http://www-dep.iarc.fr/CI5_original/ table2.asp?cancer=170&volume=8&sex=1&age_from=1&age_to=18& submit=Execute. html. Updated May 2007. Accessed August 15, 2007
  2. Jadvar H, Gamie S, Ramanna L, Conti PS. Musculoskeletal system. Semin Nucl Med 2004;34:254-261 https://doi.org/10.1053/j.semnuclmed.2004.06.002
  3. Schwarzbach M, Dimitrakopoulou-Strauss A, Willeke F, Hinz U, Strauss LG, Zhang YM, et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. ANN Surg 2000;231:380-6 https://doi.org/10.1097/00000658-200003000-00011
  4. Watanabe H, Shinozaki T, Yanagawa T, Aoki J, Tokunaga M, Inoue T, et al. Glucose metabolic analysis of musculoskeletal tumours using $^{18}$fluorine-FDG PET as an aid to preoperative planning. J Bone Joint Surg Br 2000;82:760-7 https://doi.org/10.1302/0301-620X.82B5.9824
  5. Schwarzbach M, Hinz U, Strauss LG, Willeke F, Cardona S, Mechtersheimer G, et al. Prognostic significance of preoperative [18-F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. ANN Surg 2005;241:286-94 https://doi.org/10.1097/01.sla.0000152663.61348.6f
  6. Griffeeth LK, Dehdashti F, McGuire AH, McGuire DJ, Perry DJ, Moerlein SM, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro - 2 - deoxy - D - glucose. Radiology 1992;182: 185-94 https://doi.org/10.1148/radiology.182.1.1727280
  7. Folpe AL, Lyles RH, Sprouse JT, ConradIII EU, Eary JF. (F-18) Florodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000;287:1279-87
  8. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative $^{18}$F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43:510-8
  9. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F] fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33: 683-91 https://doi.org/10.1007/s00259-005-0044-8
  10. Aoki J, Endo K, Watanabe H, Shinozaki T, Yanagawa T, Ahmed AR, et al. FDG-PET for evaluation musculoskeletal tumors. J Orthop Sci 2003;8:435-41 https://doi.org/10.1007/s10776-001-0539-6
  11. Aoki J , Watanabe H, Shinozaki T, Takagishi K, Ishihima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors : standard uptake value of 52 lesions. Radiology 2001;219:774-7 https://doi.org/10.1148/radiology.219.3.r01ma08774
  12. Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18 fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998;39:810-5
  13. Eary J, Conard EU. PET imaging : Update on sarcomas. Oncology 2007;21:249-52
  14. Gilkey FW, Moser RP. The biology of cartilage. ed. Philadelphia: Hanley and Belfus; 1990. p. 1-7
  15. Fujimoto R, Higashi T, Nakamoto Y, Hara T, Lyshchik A, Ishizu K et al. Diagnostic accuracy of bone metastases detection in cancer patients : comparison between bone scintigraphy and whole body FDG-PET. Ann Nucl Med 2006;20:399-408 https://doi.org/10.1007/BF03027375
  16. Bastiaannet E, Groen H, Jager PL, Cobben DC, van der Graaf WT, Vaalburg W et al. The value of FDG -PET in the detection, grading and response to therapy of soft tissue and bone sarcoma; a systematic review and meta- analysis. cancer treatmemt reviews 2004;30:83-101 https://doi.org/10.1016/j.ctrv.2003.07.004
  17. Schulte M, Brecht -Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med. 2000;41:1695-701
  18. Dehdashti F, Siegel BA, Griffeth LK, Fusselman MJ, Trsk DD, McGuire AH, et al. Benign versus Malignant Intraosseous Lesions : Discrimination by Means of PET with 2- [F-18] fluoro-2-deoxy- D-glucose. Radiology 1996;200:243-7 https://doi.org/10.1148/radiology.200.1.8657920
  19. Ioannidis JPA, Lau J. 18F- FDG PET for the Diagnosis and Grading of Soft Tissue sarcoma: A Meta-Analysis. J Nucl Med 2003;44:717-24
  20. Lee SM. Nodular fasciitis mimicking malignant tumor in F-18 FDG PET/CT. Korean J Nucl Med 2005;39:263-5
  21. Ogose A, Hotta T, Morita T, Yamammura S, Hosaka N, Kobayashi H, et al. Tumors of peripheral nerves: correlation of symptom, clinical signs, imaging features, and histologic diagnosis. Skeletal Radiol 1999;28:183-8 https://doi.org/10.1007/s002560050498
  22. Magnani P, Thomas TP, Tennekon G, De Vries GH, Greene DA, Brosiu FC III. Regulation of glucose transport in cultured Schwann cells. J Peripheral nerve Syst 1998;25:589-92
  23. Hamada K, Ueda T, Higuchi I, Inoue A, Tamai N, Myoi A, et al. Peripheral nerve schwannoma: two cases exhibiting increased FDG uptake inearly and delayed PET imaging. Skeletal Radiol 2005; 34:52-7 https://doi.org/10.1007/s00256-004-0845-z
  24. Ahmed AR, Watanabe H, Aoki J, Shinozaki T, Takagishi K. Schwannoma of the extremities: the role of PET in preoperative planning. Eur J Nucl Med 2001;28:1541-51 https://doi.org/10.1007/s002590100584
  25. Ferner RE, Lucas JD, O'Doherty MJ, Hughes RA, Smith MA, Cronin BF, et al. Evaluation of 18-fluorodeoxyglucose positron emission tomography (18FDG-PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis. J Neurol Neurosurg Psychiatry 2000;68:353-7 https://doi.org/10.1136/jnnp.68.3.353
  26. Gyorke T, Zajic T, Lange A, Schafer O, Moser E, Mako E, et al. Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun 2006;27:17-24 https://doi.org/10.1097/01.mnm.0000186608.12895.69
  27. Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU, et al. [18F]Fluorodeoxyglucose Positron Emission Tomography Predicts Outcome for Ewing Sarcoma Family of Tumors. J Clin Oncol 2005;23:8828-34 https://doi.org/10.1200/JCO.2005.01.7079
  28. Johnston J. Giant cell tumor of bone: the role of the giant cell in orthopedic pathology. Orthop Clin North Am 1977;8:751-70
  29. Ling L, Klein MJ, Sissons HA, Steiner GC, Winchester RJ. Expression of Ia and monocyte and macrophages lineage antigens in giant cell tumor of bone and related lesions. Arch Pathol Lab Med 1988;112:65-9
  30. Vinay Kumar, Abul K. Abbas, Nelson Fausto. Robbins and Cotran Pathologic basis of disease 7th ed. Philadelphia, Pa. : Elsevier Saunders, 2005;p1273-324
  31. Dahlin DC, Unni KK Bone tumors:general aspects and data on 8542 cases. 4th ed. Springfield: Thomas; 1986. p. 413-20
  32. Kubota K, Kubota R, Yamada S. FDG accumulation in tumor tissue (editorial). J Nucl Med 1993;34:419-21
  33. Balint E, Szabo P, Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone 2001;28:21-8 https://doi.org/10.1016/S8756-3282(00)00426-9
  34. Raisz LG, Rodan GA, Cellular basis for bone turn over. In: Avioli LV, Krane SM, eds. Metabolic bone disease and clinically related disorders. 2nd ed. Philadephia: Saunders; 1990. P. 1-41
  35. Chae HL, Park YH. F-18 FDG uptake in the nidus of an osteoid osteoma. Clin nucl med 2007;32:628-30 https://doi.org/10.1097/RLU.0b013e3180a1acf3