소세포폐암의 치료전 FDG섭취와 치료반응 및 재발과의 연관성

Correlation of Pre-treatment FDG Uptake to Therapeutic Response and Relapse in Patients with Small Cell Lung Cancer

  • 서영순 (전남대학교 의과대학 핵의학교실) ;
  • 권성영 (전남대학교 의과대학 핵의학교실) ;
  • 정신영 (전남대학교 의과대학 핵의학교실) ;
  • 송호천 (전남대학교 의과대학 핵의학교실) ;
  • 민정준 (전남대학교 의과대학 핵의학교실) ;
  • 김규식 (전남대학교 의과대학 호흡기내과학교실) ;
  • 김영철 (전남대학교 의과대학 호흡기내과학교실) ;
  • 범희승 (전남대학교 의과대학 핵의학교실)
  • Seo, Young-Soon (Departments of Nuclear Medicine, Chonnam National University Medical School) ;
  • Kwon, Seong-Young (Departments of Nuclear Medicine, Chonnam National University Medical School) ;
  • Jeong, Shin-Young (Departments of Nuclear Medicine, Chonnam National University Medical School) ;
  • Song, Ho-Chun (Departments of Nuclear Medicine, Chonnam National University Medical School) ;
  • Min, Jung-Joon (Departments of Nuclear Medicine, Chonnam National University Medical School) ;
  • Kim, Kyu-Sik (Departments of Pulmonology, Chonnam National University Medical School) ;
  • Kim, Young-Chul (Departments of Pulmonology, Chonnam National University Medical School) ;
  • Bom, Hee-Seung (Departments of Nuclear Medicine, Chonnam National University Medical School)
  • 발행 : 2007.12.31

초록

목적: 소세포폐암 환자에서 치료 전 $^{18}F$-FDG PET/CT에서 $^{18}F$-FDG의 섭취 정도(maxSUV)와 치료에 대한 반응, 그리고 재발과의 연관성에 대해 연구하고자 하였다. 대상 및 방법: 조직학적으로 소세포암으로 진단된 환자 26명을 대상으로 하였다. 모든 환자에서 병기설정 목적으로 $^{18}F$-FDG PET/CT를 시행하였으며, 항암 또는 방사선 치료에 대한 반응 평가를 위해 정기적으로 흉부 CT 검사를 시행하여 추적 관찰하였다. 모든 환자에서 $^{18}F$-FDG섭취 정도의 매개변수로 maxSUV 값을 사용하였다. 항암 또는 방사선 치료 중 또는 치료 후 흉부 CT를 기준으로 반응군과 비반응군으로 나누었다. 독립표본 T 검정을 이용하여 두 환자군간의 maxSUV 값을 비교하였다. 상관 분석을 이용해 FDG 섭취 정도와 재발, 그리고 $^{18}F$-FDG섭취 정도와 재발까지의 기간과의 관계를 평가하였다. ROC곡선을 이용하여 반응군과 비반응군 사이의 진단적 maxSUV 값을 추정하였다. 결과: 추적 관찰한 흉부 CT결과를 토대로 하여 총 26명의 환자 중 21명(81%)은 반응군으로 5명(19%)은 비반응군으로 분류하였다. 반응군과 비반응군의 폐병소에서 평균 maxSUV 값은 각각 $14.15{\pm}3.72$$9.17{\pm}2.15$였고, 반응군에서의 maxSU 값이 비반응군에서보다 통계학적으로 유의하게 낮았다(p<0.05). 반응군과 비반응군 사이의 진단적 maxSUV 값을 구하기 위한 ROC 곡선에서 maxSUV가 8.99일 때 100%의 민감도를 보였다. marSUV 값과 진단에서부터 재발까지의 기간은 음의 상관관계를 보였다(p<0.05, r=-0.757). 결론: 소세포폐암 환자에서 치료 전 $^{18}F$-FDG PET/CT 에서의 $^{18}F$-FDG의 섭취정도가 비반응군에서보다 반응군에서 통계적으로 유의하게 낮았다. 치료 전 $^{18}F$-FDG PET/CT에서 $^{18}F$-FDG의 섭취가 높은 환자에서 더 일찍 재발하였다.

Purpose: We evaluated correlation of $^{18}F$-FDG uptakes, therapeutic response and relapse in pre-treatment $^{18}F$-FDG PET/CT in patients with SCLC. Materials and methods: We included 26 patients with pathologically proven small cell lung cancer. Total 102 lesions (26 lungs, 69 lymph nodes and 8 metastatic lesions) were evaluated. All patients underwent $^{18}F$-FDG PET/CT for staging. The maxSUV was used as a parameter of $^{18}F$-FDG uptake. The patients were divided into responders and non-responders according to response criteria on chest CT scan after 3 cycles of chemotherapy. We compared maxSUV between two groups by using independent t-test. To access correlation with $^{18}F$-FDG uptake and relapse, maxSUV and interval time to relapse was analyzed by correlation analysis. The cutoff value of maxSUV was evaluated by ROC curve. Results: Twelve-one patients (81%) were responders and five patients were non-responders on follow-up chest CT scan. The mean maxSUV of main lung lesions in responders and non-responders were $14.15{\pm}3.72$ and $9.17{\pm}2.15$, respectively. The maxSUV in the responders was significantly lower than that in non-responders (p<0.05). According to ROC curve, point of cut that predicts therapeutic response was 8.98 with 100% sensitivity and 57% specificity. The correlation analysis between $^{18}F$-FDG uptakes and interval time to relapse showed a significant negative correlation (p<0.05, r=-0.757). Conclusion: The pre-treatment $^{18}F$-FDG uptake of responders was significantly lower than that of non-responders. Patients with high $^{18}F$-FDG uptake in pre-treatment $^{18}F$-FDG PET/CT relapse earlier.

키워드

참고문헌

  1. Payne D, Naruke T. Lung cancer. In: Pollock RE, Manual of clinical oncology, 7th ed. New York: Wiley; 1999:385-405
  2. Mountain CF. Revision in the international system for staging lung cancer. Chest 1997;111:1710-7 https://doi.org/10.1378/chest.111.6.1710
  3. Meert AP, Paesmans M, Berghmans T, Martin B, Mascaux C, Vallot F, et al. Prophylactic cranial irradiation in small cell lung cancer: a systemic review of the literature with meta-analysis. BMC cancer 2001;1:5 https://doi.org/10.1186/1471-2407-1-5
  4. Sing T, Wu F, Brodiin O, Fasth KJ, Langstrom B, Bergstrom M. In vitro PET evaluation in lung cancer cell lines. Anticancer Res 2000;20:1375-80
  5. Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, et al. Impact of F-18-FDG-PET on the primary staging of small cell lung cancer. Eur J Nucl Med Mol Imaging 2004;31:1614-20 https://doi.org/10.1007/s00259-004-1606-x
  6. Blum R, MacManus MP, Rischin D, Michael M, Ball D, Hicks RJ. Impact of positron emission tomography on the management of patients with small cell lung cancer preliminary experience. Am J Clin Oncol 2004;27:164-71 https://doi.org/10.1097/01.coc.0000054889.58718.6F
  7. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [$^{18}$F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 2003;30:78-84 https://doi.org/10.1007/s00259-002-0937-8
  8. Oriuchi N, Higuchi T, Ishikita T, Miyakubo M, Hanaoka H, Iida Y, et al. Present role and future prospects of positron emission tomography in clinical oncology. Cancer Sci 2006;97:1291-7 https://doi.org/10.1111/j.1349-7006.2006.00341.x
  9. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology 2006;238: 405-22 https://doi.org/10.1148/radiol.2382041977
  10. Francis IR, Brown RK, Avram AM. The clinical role of CT/PET in oncology: an update. Cancer Imaging 2005;5:S68-75 https://doi.org/10.1102/1470-7330.2005.0024
  11. Messa C, Bettinardi V, Picchio M, Pelosi E, Landoni C, Gianolli L, Gilardi MC, et al. PET/CT in diagnostic oncology. Q J Nucl Med Mol Imaging 2004;48:66-75
  12. Coleman RE. Clinical PET in Oncology. Clin Positron Imaging 1998;1:15-30 https://doi.org/10.1016/S1095-0397(97)00004-6
  13. Pottgen C, Levegrun S, Theegarten D, Marnitz S, Grehl S, Pink R, et al. Value of $^{18}$F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 2006;12:97-106 https://doi.org/10.1158/1078-0432.CCR-05-0510
  14. Hellwig D, Groschel A, Graeter TP, Hellwig AP, Nestle U, Schafers HJ, et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2006;33:13-21 https://doi.org/10.1007/s00259-005-1919-4
  15. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schafers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. Thorac Cardiovasc Surg 2004 ;128:892-9 https://doi.org/10.1016/j.jtcvs.2004.07.031
  16. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. $^{18}$F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 2002;43:39-45
  17. Hicks RJ, Kalff V, MacManus MP, Ware RE, McKenzie AF, Matthews JP, et al. The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 2001;42:1605-13
  18. Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. [$^{18}$F] fluoromisonidazole and [$^{18}$F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/ radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 2006;6:51 https://doi.org/10.1186/1471-2407-6-51
  19. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. Repeat $^{18}$F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 2007;55:165-71 https://doi.org/10.1016/j.lungcan.2006.09.028
  20. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ, et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 1999;17:3201-6 https://doi.org/10.1200/JCO.1999.17.10.3201
  21. Ohtsuka T, Nomori H, Watanabe K, Kaji M, Naruke T, Suemasu K, et al. Prognostic significance of [(18)F]fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer 2006;107:2468-73 https://doi.org/10.1002/cncr.22268
  22. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 2005;130:151-9 https://doi.org/10.1016/j.jtcvs.2004.11.007
  23. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. Is standardised (18)F-FDG uptake value an outcome predictor in patients with stage III non-small cell lung cancer? Eur J Nucl Med Mol Imaging 2006;33:263-9 https://doi.org/10.1007/s00259-005-1953-2
  24. Borst GR, Belderbos JS, Boellaard R, Comans EF, De Jaeger K, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer 2005;41:1533-41 https://doi.org/10.1016/j.ejca.2005.03.026
  25. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 2004;22:3255-60 https://doi.org/10.1200/JCO.2004.11.109
  26. Jackman DM, Johnson BE. Small-cell lung cancer. Lancet 2005;366:1385-96 https://doi.org/10.1016/S0140-6736(05)67569-1
  27. Lee KH, Lee SH, Kim DW, Kang WJ, Chung JK, Im SA, et al. High fluorodeoxyglucose uptake on positron emission tomography in patients with advanced non-small cell lung cancer on platinum-based combination chemotherapy. Clin Cancer Res 2006; 15:4232-6
  28. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [(18)F]-fluorodeoxy- D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676-88 https://doi.org/10.1200/JCO.2000.18.8.1676
  29. Wieder HA, Brcher BL, Zimmermann F, Becker K, Lordick F, Beer A, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004;22:900-8 https://doi.org/10.1200/JCO.2004.07.122
  30. S.-J. Kim, S.-k. Kim, E. S. Lee, J. Ro & S. h. Kang. Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 2004;15:1352-1357 https://doi.org/10.1093/annonc/mdh345
  31. Rizk N, Downey RJ, Akhurst T, Gonen M, Bains MS, Larson S, et al. Preoperative $^{18}$[F]-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg 2006;81:1076-81 https://doi.org/10.1016/j.athoracsur.2005.09.063
  32. Paesmans M, Sculier JP, Lecomte J, Thiriaux J, Libert P, Sergysels R, et al. Prognostic factors for patients with small cell lung carcinoma: analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. Cancer 2000;89:523-33 https://doi.org/10.1002/1097-0142(20000801)89:3<523::AID-CNCR7>3.0.CO;2-6
  33. Spiegelman D, Maurer LH, Ware JH, Perry MC, Chahinian AP, Comis R, Eaton W, et al. Prognostic factors in small-cell carcinoma of the lung: an analysis of 1,521 patients. J Clin Oncol 1989; 7:344-54 https://doi.org/10.1200/JCO.1989.7.3.344
  34. Albain KS, Crowley JJ, LeBlanc M, Livingston RB. Determinants of improved outcome in small-cell lung cancer: an analysis of the 2,580-patient Southwest Oncology Group data base. J Clin Oncol 1990;8:1563-74 https://doi.org/10.1200/JCO.1990.8.9.1563
  35. Osterlind K, Andersen PK. Prognostic factors in small cell lung cancer: multivariate model based on 778 patients treated with chemotherapy with or without irradiation. Cancer Res 1986;46: 4189-94
  36. Wolf M, Holle R, Hans K, Drings P, Havemann K. Analysis of prognostic factors in 766 patients with small cell lung cancer (SCLC): the role of sex as a predictor for survival. Br J Cancer 1991;63:986-92 https://doi.org/10.1038/bjc.1991.215