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AXES OF A MINIMAL SURFACE WITH PLANAR
ENDS

SuN Sook JIN*

ABSTRACT. In this article, we consider axes of a minimal surface
in R? of genus zero with a planar end, and then prove that two
consecutive axes near the planar end must be parallel but cannot
be in a same line.

1. Introduction

An immersed surface in R3 is said to be minimal if its mean curvature
vanishes identically. Recall the catenoid is the unique nonplanar minimal
surface of revolution, and so is really the simplest complete minimal
surface after the plane. Topologically it is a sphere S? minus two points,
and outside of a sufficiently large compact set of R? it consists of two
unbounded components corresponding to the two punctures in S2.

In this article, we consider a minimal surface of genus zero with a
planar end and try to look at that similar to the axis of the rotation of
catenoid.

From the physical point of view, minimal surfaces in R3 are objects
submitted to a balanced force system, consisting in the forces associated
to non-zero one-dimensional homology classes in the surfaces. More
precisely, each closed curve v in a minimal surface M carries a force that
expresses the stress produced by an unit conormal vector field v along
this curve on the whole surface. The action of v provides a tendency
of translation, or linear momentum, which we call the fluz vector. On
the other hand, another action relates a tendency of rotation around an
axis, or angular momentum, which is expressed by the torque vector of
M along . These objects have been deeply studied by Kusner in [3], and
they and their modifications have only recently come into widespread
use in the study of minimal and constant mean curvature surfaces, see
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[3] and [4]. In particular, with the simple calculation, we can compute
the flux of the catenoid in the direction of the axis of rotation.

2. Flux and Torque

Let S be a compact domain of a Riemann surface, and let
X:S—>R3

be an isometic immersion. Applying Stoke’s theorem we have that;

/ASXdAz/ vds
S oS

where dA is the element of area on §, Ag is the Laplacian on S, ds is
the line element on @5, and v is the outward unit conormal which is
tangent to X (S) but normal to 90X (S). More precisely,

v =dX (1)

where 77 is the unit vector orthogonal to the unit vector § tangent to 95
and (77, §) gives the orientation of S, see Figure 1.

vy

FIiGURE 1.

If X is minimal and S is equipped with the metric induced by X,
then .
AsgX =—HN = (0,0,0)

where H is the mean curvature of S and N is the outward unit normal

of X(S). Thus we have;
/ vds = (0,0,0).
as
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DEFINITION 2.1. Let X : S — R? be a minimal surface and v C S
is a closed curve. Then, under the metric induced by X, we define the
flux of X along v as that;

Flux(y) :=/1/ds
g

The flux is well defined on the homology class of [y]. In fact, if ¥ € [7]
then v U+ bounds a domain 2 and we have;

Oz/ASXdAz/uds—/uds.
Q v ¥

Now let R; be the Killing field associated with counter-clockwise
rotation about the axis £; in the 4 direction. From the identity

(UAV)-W =det(U,V,W)
for vectors U, V,W in R?, we have;
(XAv)-u=(UuNX) v=Rz v

where X is the position vector of a minimal surface defined on S. Be-
cause R is a Killing field, f7 Ry - vds is also a homology invariant and

Rz -vds=0.
oS

This motivates defining the torque of a closed curve -y on S as the vector-
valued quantity.

FIGURE 2.
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DEFINITION 2.2. The torque of the minimal surface S along ~ at
O :=(0,0,0) is defined by;

Torquep(y) = /X Avds.
gl

In general, the torque is dependent on the base point of the position
vector X. If we move the base point from O to W &€ R3, then the
position vector based on W is changed to X — W, and the torque is

Torquew (y) = /(X —W)Avds
0

= Torqueo(y) — W A Fluz(y).

It follows that the torque of v does not depend upon the base point of
X if the flux of v vanishes.

3. Planar ends

Let X : § — R3 be a properly minimal immersion of finite total
curvature with embedded ends. Denote by

X(S) = M.

Then it is well-known that, by Osserman [6], there exist p;,---,pe in
the closure S of the Riemann surface S with

S=8\{p1, - ,pe}

such that the stereographic projection of the Gauss map g : S — C, just
say the Gauss map of the minimal surface, extends to a holomorphic
map g : S — C. Let Ei,---,E; be the ends of M corresponding to
the punctures py,--- ,py, respectively. In [8], Schoen proved that each
E;, 1 <14 < ¥, is the graph of a function u with bounded slope over the
exterior of a bounded region in some horizontal plane II; by;

(1) w(z1,72) = B+ alogr + 7% (niz1 + Ym2) + O(r™?)

for r = (22 + x%)% sufficiently large, where 3, a, 1 and -, are real
constants depending on FE;. If a = 0 then the end is asymptotic to a
plane, we say it a planar end, otherwise it is asymptotic to a catenoid.

Let E; be a planar end, then its Gauss map g has a zero or a pole of
order k > 2 at the corresponding puncture p;, i.e., there is a coordinate
z € C such that;

(2) 9(z) = (z — pi)**
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in a small neighborhood of p;. Additionally, (E; N1I;) \ B, B being a
large ball, consists of 2k — 2 curves which are asymptotic to 2k — 2 rays
on II; making an equal angle of 7/(k — 1). In particular, if g has a zero
(or a pole) of the minimum branching order 2 at the puncture, then
M N1I; is an immersion of R! which is asymptotically parallel to the
line;

(3) TZ1 + Y222 =0

in the horizontal plane II;, see (1).

Note that we can take a representative curve of the planar end E;.
Precisely, it is the image of a boundary of a sufficiently small neighbor-
hood of the puncture p; in the domain, for example, E; N 0B.

PROPOSITION 3.1 ([2]). We define the flux and the torque associated
to a planar end E with ramification order k > 1 in (2) as that of one
representative curve for the end. If it is the graph of a function u defined
in (1) over a horizontal plane, then we can compute that;

Fluz(E) = (0,0,0)
— =72, aO ifk =2
(4) Torque(E) = (=72,71,0) ‘
(0707 0) ifk > 2.
Proof. Take a representative curve I' := E N Cg of E where
Cr ={(z1,22,23) € R? |x% + ;p% = RZ}

is a right cylinder for a sufficiently large R > 0. Then the position vector
['(#) and the conormal vector v of the curve are given by;
1
') = (R cos @, Rsin6, E(f)q cos 0 4 vy 5in6) + O(R™?) )
v(0) = (cos 6,sin6,0) + O(R™2),

where 0 < 0 < 27, respectively. First then we have;
27
Fluz(E) = / v(0) Rdf = (0,0,0),
0

as R — oo. It also follows that the torque of a planar end does not
depend upon a base point. Also, as R — oo, we compute the torque;

27
Torque(E) = /0 I'@) Av(0) RdO = 7w(—vy2,71,0).
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Note that if £ has the minimum branching order, then the torque of
E is the direction of ENII at infinity, see (3).

4. Main results

We denote a horizontal plane II; := {(x1,z2,z3)| z3 = t} for some
t € R. Let E be a planar end of a minimal surface M asymptotic to 1.
Suppose that M N1l is an immersion of R! parallel to a line at infinity,
i.e., E has the minimum branching order. Then there is a sufficiently
small € > 0 such that each intermediate curve M N1I; is closed Jordan
curve for all ¢ € [—¢,0) U (0,€¢]. Denote a part of M lying on the slab
S(—e€,€) :={(z1,22,23)] —€ < z3 <€} by

My := M N S(—¢,¢)

which is a minimal annulus with a planar end. So there is r > 1 such
that My is conformally equivalent to a punctured annulus A, \ {p} where

A, ={zeC|l/r<|z|<r}, peEA,.
Let X : A, \ {p} — R? be a minimal surface with My = X (4, \ {p}).

LEMMA 4.1. There is a base point (Q; € 1I;, —e <t < € and t # 0,
such that Torqueg, () is vertical where v, = M N1I;.

Proof. Let X = (X', X%, X3) and take a point Q = (Q',Q?,Q?) in
R3, then X3 = Q? along 7; clearly. The torque vector of v; at Q is

Torqueg(y:) = / (X —Q)Avds
Tt

- / (X% — Qg (X" — Qs (X" — Q') — (X2 — Q%)) ds
vt

Since M meets the horizontal plane II; transversally, we may assume
that v3 > 0 in . If Q' < 0 and |Q!] is sufficiently large, then

/ (X! = QYrzds >0
0

see Figure 3. On the contrary, if Q' > 0 and |Q1| is also large, then
f% (X! — @Yvsds < 0. Therefore, we have a real number Q} such that;

/ (X! —Q})vsds = 0.
"
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FIGURE 3.

Similarly, there is Q7 € R with f% (X? — Q?)v3ds = 0. Take the point
Q: = (QF,Q7,t) € R3, then Torqueg,(y:) must be vertical. It finishes
the proof of the theorem. O

Now we will refer a flux of My by; Let I' be a representative curve of
the end and let M, and MO+ be the lower and upper parts of M \ Iy,
respectively, defined by the followings;

My ==Myn{—e<z3<0}, M :=MyN{0<z3<e}

Take two Jordan curves I'" C M, and I'" C M, then TUT~ UT*
bounds a compact minimal surface, precisely, it is the image of a compact
subset of the domain A, \ {p}, see Figure 4. So

Fluz(I'") — Fluz(l') — Fluz(I'~) = (0,0,0).

Recall the flux vector of a planar end Fluz(I') must be vanish, and then
we have;

Fluz(I'Y) = Fluz(I'7).

In other words, each intermediate closed Jordan curve of M, has the
same flux. We refer it a fluz of the minimal surface and denote by
Flux(My).

THEOREM 4.2. Let Q; € II;, —e < t < 0 (resp., 0 < t <€), be a
base point such that Torqueq,(v:), v¢ = M N1, is vertical. We call it
a vertical base point. Then all vertical base points of M (resp., M)
are lying on a line ¢_ (resp., ) in the direction of Flux(My).

Proof. Let both Torqueq, (v,) and Torqueq,, (vi,) be vertical vec-
tors where —e <} <2 <0 or 0 <?; <ty <e. Since 7y, and 7y, are
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FIGURE 4.

homologous, we have;

TOTquth2 (1) = TOTquth2 (V1)
= / (X — Q) ANvds
Yty

= / (X—Qtl)AVdS+/ (Qtl—Qtz)/\lldS
Tt1

Ytq
= Torqueq, (1) + (Qn — Q) N Fluz(Mp)
It follows that (Q:, — Q) A Fluxz(My) is also vertical vector. Observe
both @, — @, and Fluxz(Mj) cannot be horizontal, so it must be;
(Qtl - Qt2) A Flux(MO) = (0703 0)'

Therefore, (Q, — Qy,) and Fluz(My) are parallel.
We refer to these straight lines azes /_ and /4 as the azes of M

and MO+ , respectively. The above theorem implies that all axes have the
direction of Flux(My). O

THEOREM 4.3. Two consecutive axes {_ and ¢ near the planar end
must be parallel but not be in a same line.

Proof. The first statement is clear, so we enough to show the sec-
ondary one. Let I be a representative curve of the planar end E, and
Ye = M NI, v = M NII_.. Since I' Uy, U~v_¢ bounds a compact
minimal surface, we have

Torquep(ye) — Torquep(T') — Torquep(y-c) = (0,0,0)

for all points P € R3.
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FIGURE 5.

Suppose that vertical base points @), € Il and ) € II_, are lying
on a same axis line. Then the vector (Q¢ — @)_¢) must be parallel to
Flux(Mj), and hence;

Torquep(T) = Torquep(.) — Torquep(7—.)
= Torqueq (V) — Torqueg_ (v-¢) + (Qe — Q—¢) A Fluz(My)
= Torqueq (ve) — Torqueq_ (vV—¢)

which is also vertical and independent under the base point as the torque
of a planar end. However, the torque of a planar end must be horizontal,
see (4). Therefore we have;

Torque(E) := Torquep(T") = (0,0,0)

which contradicts that F has the minimum branching order, as in (4) of
the proposition in Section 3, too. ]
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