ORTHOGONAL GROUP OF CERTAIN INDEFINITE LATTICE

Chang Heon Kim*

Abstract

We compute the special orthogonal group of certain lattice of signature $(2,1)$.

1. Introduction

Given an even lattice M in a real quadratic space of signature $(2, n)$, Borcherds lifting [1] gives a multiplicative correspondence between vector valued modular forms F of weight $1-n / 2$ with values in $\mathbb{C}\left[M^{\prime} / M\right](=$ the group ring of $\left.M^{\prime} / M\right)$ and meromorphic modular forms on complex varieties $(O(2) \times O(n)) \backslash O(2, n) / \operatorname{Aut}(M, F)$. Here M^{\prime} denotes the dual lattice of $M, O(2, n)$ is the orthogonal group of $M \otimes \mathbb{R}$ and $\operatorname{Aut}(M, F)$ is the subgroup of $\operatorname{Aut}(M)$ leaving the form F stable under the natural action of $\operatorname{Aut}(M)$ on M^{\prime} / M. In particular, if the signature of M is $(2,1)$, then

$$
\frac{O(2,1)}{O(2) \times O(1)} \approx \mathfrak{H} .
$$

and Borcherds' theory gives a lifting of vector valued modular form of weight $1 / 2$ to usual one variable modular form on $\operatorname{Aut}(M, F)$. In this sense in order to work out Borcherds lifting it is important to find appropriate lattice on which our wanted modular group acts. In this article we will show:

Theorem 1.1. Let M be a 3 -dimensional even lattice of all 2×2 integral symmetric matrices, that is,

$$
M=\left\{\left.\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right) \right\rvert\, A, B, C \in \mathbb{Z}\right\}
$$

Received December 30, 2006.
2000 Mathematics Subject Classification: Primary 11F03, 11H56.
Key words and phrases: indefinite lattice, orthogonal group.

* This work was supported by a Bahrom research grant from Seoul Women's University (2007).
with norm $(\lambda, \lambda)=2 q(\lambda)=-2 \operatorname{det}(\lambda)$ for $\lambda \in M$. Then $\operatorname{Aut}(M)$ (=the special orthogonal group of M) is isomorphic to $P S L_{2}(\mathbb{Z})$.

REMARK 1.2. Similarly, for a fixed positive integer N, if we take M to be an even lattice of all symmetric matrices $\lambda=\left(\begin{array}{cc}A / N & B \\ B & C\end{array}\right)$ with $A, B, C \in \mathbb{Z}$ and the norm $(\lambda, \lambda)=-2 N \operatorname{det}(\lambda)$, then we can prove $\operatorname{Aut}(M)=\Gamma_{0}^{*}(N)\left(=\right.$ the group generated by $\Gamma_{0}(N)$ and all Atkin-Lehner involutions).

2. Proof of Theorem 1.1

For each $\gamma \in \Gamma=S L_{2}(\mathbb{Z})$ and $\lambda \in M, \gamma \lambda \gamma^{t}$ gives an action of Γ on M. Since $q\left(\gamma \lambda \gamma^{t}\right)=-\operatorname{det}\left(\gamma \lambda \gamma^{t}\right)=-\operatorname{det}(\lambda)=q(\lambda)$, we get a natural homomorphism f from Γ to $\operatorname{Aut}(M)$ defined by $f(\gamma)(\lambda)=\gamma \lambda \gamma^{t}$. Let $\gamma \in \operatorname{ker}(f)$. Then it holds that

$$
\begin{equation*}
\gamma \lambda \gamma^{t}=\lambda \quad \text { for all } \lambda \in M \tag{1}
\end{equation*}
$$

Applying (1) to $\lambda=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, respectively, we obtain $\gamma=$ $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Therefore f induces a map from $P S L_{2}(\mathbb{Z})$.

Now let us show that f is surjective. To this end we first identify each element $\left(\begin{array}{ll}A & B \\ B & C\end{array}\right)$ of M with 3×1 integral matrix $\left(\begin{array}{c}A \\ B \\ C\end{array}\right)$ and define $q\left(\begin{array}{l}A \\ B \\ C\end{array}\right)=B^{2}-A C$. Then for each $m \in \operatorname{Aut}(M)$ one can express

$$
m=\left(\begin{array}{lll}
a & b & c \tag{2}\\
d & e & f \\
g & h & i
\end{array}\right) \in G L_{3}(\mathbb{R}) \quad \text { satisfying } q\left(m\left(\begin{array}{c}
A \\
B \\
C
\end{array}\right)\right)=q\left(\begin{array}{c}
A \\
B \\
C
\end{array}\right)
$$

Since $m\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), m\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $m\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ have integral entries, we see that m belongs to $G L_{3}(\mathbb{Z})$. And it follows from (2) that $(d A+e B+f C)^{2}-$ $(a A+b B+c C)(g A+h B+i C)=B^{2}-A C$, which yields $\left(d^{2}-a g\right) A^{2}+$ $\left(e^{2}-b h\right) B^{2}+\left(f^{2}-c i\right) C^{2}+(2 d e-a h-b g) A B+(2 e f-b i-c h) B C+$ $(2 d f-c g-a i) A C=B^{2}-A C$. Comparing the coefficients in the above equality gives rise to

$$
\begin{align*}
& d^{2}=a g \tag{3}\\
& f^{2}=c i \tag{4}\\
& 2 d f-c g-a i=-1 \tag{5}
\end{align*}
$$

$$
\begin{align*}
& e^{2}=1+b h \tag{6}\\
& 2 d e=a h+b g \tag{7}\\
& 2 e f=b i+c h . \tag{8}
\end{align*}
$$

From (3), (4) and (5) we see that $\operatorname{gcd}(a, g)=\operatorname{gcd}(c, i)=1$ and a, g, c, i have the same sign. Thus we may assume $a=p^{2}, g=r^{2}, d=p r, c=$ $q^{2}, i=s^{2}, f=q s$ for some integers p, q, r, s with $(p s-r q)^{2}=1$. Now if we subtract $(8) \times g$ from $(7) \times i$, we obtain $(a i-c g) h=2 e(d i-f g)$ and therefore $\left(p^{2} s^{2}-q^{2} r^{2}\right) h=2 e\left(p r s^{2}-q s r^{2}\right)$, which is simplified to

$$
\begin{equation*}
(p s+r q) h=2 e r s \tag{9}
\end{equation*}
$$

Similarly, by subtracting (8) $\times a$ from (7) $\times c$ and simplifying we get

$$
\begin{equation*}
(p s+r q) b=2 e p q \tag{10}
\end{equation*}
$$

Multiplying sides by sides in (9) and (10) yields $(p s+r q)^{2} b h=4 e^{2} p q r s$. Now if we use (6), we come up with $e^{2}(p s-r q)^{2}=(p s+r q)^{2}$. Since we know that $(p s-r q)^{2}=1$, we obtain $e^{2}=(p s+r q)^{2}$. Hence m is of the form

$$
m=\left(\begin{array}{ccc}
p^{2} & 2 p q & q^{2} \\
p r & p s+r q & q s \\
r^{2} & 2 r s & s^{2}
\end{array}\right)
$$

On the other hand, from

$$
\begin{aligned}
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) & \left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)\left(\begin{array}{ll}
p & r \\
q & s
\end{array}\right) \\
& =\left(\begin{array}{cc}
p^{2} A+2 p q B+q^{2} C & p r A+(p s+r q) B+q s C \\
p r A+(p s+r q) B+q s C & r^{2} A+2 s r B+s^{2} C
\end{array}\right)
\end{aligned}
$$

we observe that m is induced from the action of $\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)$, which completes the proof.

References

[1] R. Borcherds, Automorphic forms with singularities on Grassmanians, Invent. Math. 132 (1998), 491-562.
*
Department of Mathematics
Seoul Women's University
Seoul, 139-774, Republic of Korea
E-mail: chkim@swu.ac.kr

