JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 1, March 2007

ORTHOGONAL GROUP OF CERTAIN INDEFINITE LATTICE

CHANG HEON KIM*

ABSTRACT. We compute the special orthogonal group of certain lattice of signature (2, 1).

1. Introduction

Given an even lattice M in a real quadratic space of signature (2, n), Borcherds lifting [1] gives a multiplicative correspondence between vector valued modular forms F of weight 1-n/2 with values in $\mathbb{C}[M'/M]$ (= the group ring of M'/M) and meromorphic modular forms on complex varieties $(O(2) \times O(n)) \setminus O(2, n) / \operatorname{Aut}(M, F)$. Here M' denotes the dual lattice of M, O(2, n) is the orthogonal group of $M \otimes \mathbb{R}$ and $\operatorname{Aut}(M, F)$ is the subgroup of $\operatorname{Aut}(M)$ leaving the form F stable under the natural action of $\operatorname{Aut}(M)$ on M'/M. In particular, if the signature of M is (2, 1), then

$$\frac{O(2,1)}{O(2) \times O(1)} \approx \mathfrak{H}.$$

and Borcherds' theory gives a lifting of vector valued modular form of weight 1/2 to usual one variable modular form on $\operatorname{Aut}(M, F)$. In this sense in order to work out Borcherds lifting it is important to find appropriate lattice on which our wanted modular group acts. In this article we will show:

THEOREM 1.1. Let M be a 3-dimensional even lattice of all 2×2 integral symmetric matrices, that is,

$$M = \left\{ \begin{pmatrix} A & B \\ B & C \end{pmatrix} \mid A, B, C \in \mathbb{Z} \right\}$$

Received December 30, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11F03, 11H56.

Key words and phrases: indefinite lattice, orthogonal group.

^{*} This work was supported by a Bahrom research grant from Seoul Women's University (2007).

Chang Heon Kim

with norm $(\lambda, \lambda) = 2q(\lambda) = -2 \det(\lambda)$ for $\lambda \in M$. Then $\operatorname{Aut}(M)$ (=the special orthogonal group of M) is isomorphic to $PSL_2(\mathbb{Z})$.

REMARK 1.2. Similarly, for a fixed positive integer N, if we take M to be an even lattice of all symmetric matrices $\lambda = \begin{pmatrix} A/N & B \\ B & C \end{pmatrix}$ with $A, B, C \in \mathbb{Z}$ and the norm $(\lambda, \lambda) = -2N \det(\lambda)$, then we can prove $\operatorname{Aut}(M) = \Gamma_0^*(N)$ (=the group generated by $\Gamma_0(N)$ and all Atkin-Lehner involutions).

2. Proof of Theorem 1.1

For each $\gamma \in \Gamma = SL_2(\mathbb{Z})$ and $\lambda \in M$, $\gamma \lambda \gamma^t$ gives an action of Γ on M. Since $q(\gamma \lambda \gamma^t) = -\det(\gamma \lambda \gamma^t) = -\det(\lambda) = q(\lambda)$, we get a natural homomorphism f from Γ to $\operatorname{Aut}(M)$ defined by $f(\gamma)(\lambda) = \gamma \lambda \gamma^t$. Let $\gamma \in \ker(f)$. Then it holds that

(1)
$$\gamma \lambda \gamma^t = \lambda \quad \text{for all } \lambda \in M.$$

Applying (1) to $\lambda = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, respectively, we obtain $\gamma = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Therefore f induces a map from $PSL_2(\mathbb{Z})$.

Now let us show that f is surjective. To this end we first identify each element $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$ of M with 3×1 integral matrix $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ and define $q\begin{pmatrix} A \\ B \\ C \end{pmatrix} = B^2 - AC$. Then for each $m \in \operatorname{Aut}(M)$ one can express (2) $m = \begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix} \in GL_3(\mathbb{R})$ satisfying $q\begin{pmatrix} m\begin{pmatrix} A \\ B \\ C \end{pmatrix} = q\begin{pmatrix} A \\ B \\ C \end{pmatrix}$.

Since $m\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$, $m\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$ and $m\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$ have integral entries, we see that m belongs to $GL_3(\mathbb{Z})$. And it follows from (2) that $(dA + eB + fC)^2 - (aA + bB + cC)(gA + hB + iC) = B^2 - AC$, which yields $(d^2 - ag)A^2 + (e^2 - bh)B^2 + (f^2 - ci)C^2 + (2de - ah - bg)AB + (2ef - bi - ch)BC + (2df - cg - ai)AC = B^2 - AC$. Comparing the coefficients in the above equality gives rise to

$$(3) d2 = ag$$

(4)
$$f^2 = ci$$

$$(5) \qquad \qquad 2df - cg - ai = -1$$

Orthogonal group of certain indefinite lattice

(6)
$$e^2 = 1 + bh$$

(7)
$$2de = ah + bg$$

$$(8) 2ef = bi + ch.$$

From (3), (4) and (5) we see that gcd(a,g) = gcd(c,i) = 1 and a, g, c, ihave the same sign. Thus we may assume $a = p^2, g = r^2, d = pr, c = q^2, i = s^2, f = qs$ for some integers p, q, r, s with $(ps - rq)^2 = 1$. Now if we subtract (8) × g from (7) × i, we obtain (ai - cg)h = 2e(di - fg) and therefore $(p^2s^2 - q^2r^2)h = 2e(prs^2 - qsr^2)$, which is simplified to

$$(9) (ps+rq)h = 2ers$$

Similarly, by subtracting $(8) \times a$ from $(7) \times c$ and simplifying we get

$$(10) (ps+rq)b = 2epq.$$

Multiplying sides by sides in (9) and (10) yields $(ps+rq)^2bh = 4e^2pqrs$. Now if we use (6), we come up with $e^2(ps-rq)^2 = (ps+rq)^2$. Since we know that $(ps-rq)^2 = 1$, we obtain $e^2 = (ps+rq)^2$. Hence *m* is of the form

$$m = \begin{pmatrix} p^2 & 2pq & q^2 \\ pr & ps + rq & qs \\ r^2 & 2rs & s^2 \end{pmatrix}.$$

On the other hand, from

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} p & r \\ q & s \end{pmatrix}$$

$$= \begin{pmatrix} p^2A + 2pqB + q^2C & prA + (ps + rq)B + qsC \\ prA + (ps + rq)B + qsC & r^2A + 2srB + s^2C \end{pmatrix},$$

we observe that m is induced from the action of $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$, which completes the proof.

References

 R. Borcherds, Automorphic forms with singularities on Grassmanians, Invent. Math. 132 (1998), 491-562.

*

Department of Mathematics Seoul Women's University Seoul, 139-774, Republic of Korea *E-mail*: chkim@swu.ac.kr 49