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ERROR ANALYSIS OF k-FOLD PSEUDO-HALLEY’S
METHOD FINDING A SIMPLE ZERO

Young Ik Kim*

Abstract. Given a nonlinear function f : R → R that has a sim-
ple real zero α, a new numerical method to be called k-fold pseudo-
Halley’s method is proposed and it’s error analysis is under inves-
tigation to confirm the convergence behavior near α. Under the
assumption that f is sufficiently smooth in a small neighborhood of
α, the order of convergence is found to be at least k+3. In addition,
the corresponding asymptotic error constant is explicitly expressed
in terms of k, α and f as well as the derivatives of f . A zero-
finding algorithm is written and has been successfully implemented
for numerous examples with Mathematica.

1. Introduction and preliminaries

The orders of convergence are known to range between 1 and 3 for
many classical numerical schemes[5-9] such as Newton’s method, Hal-
ley’s method and the secant method as well as the bisection method. In
this paper, a high-order numerical method will be developed by extend-
ing the classical method and its error analysis will be presented together
with computational examples confirmed via Mathematica programming.
Suppose that a given function f : R → R has a simple real zero α and
is sufficiently smooth[1,10] in a small neighborhood of α. Let g : R→ R
be an iterative function whose fixed point is the simple zero α of f to
be sought. The aim of this analysis is to find α as accurate as possible
and to conduct the error analysis for a constructed iterative method

xn+1 = g(xn), n = 0, 1, 2, · · · . (1.1)
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In view of the detailed analysis described in [5], the asymptotic error
constant (also called the speed of convergence) η and order of convergence
p[2,3,11] satisfy the following relation:

η = lim
n→∞

∣∣∣en+1

en
p

∣∣∣ = |g(p)(α)| / p!, (1.2)

where en = xn − α and p is the constant such that di

dxi g(x)|x=α =
g(i)(α) = 0 for 0 ≤ i ≤ p − 1 and g(p)(α) 6= 0. For an arbitrarily given
x ∈ R, we now define a function F : R→ R by

F (w) = w − 2f(w) f ′(x)
2f ′(x)2 − f(w) f ′′(x)

, (1.3)

where ′ denotes the derivative operator and 2f ′(x)2 − f(w) f ′′(x) 6= 0.
Note that F is well-defined in a sufficiently small neighborhood of α.
Let w0(x) = F (x). Then for k ∈ N we recursively define a sequence of
functions

wk(x) = F (wk−1(x)) = wk−1(x)− 2f(wk−1(x)) f ′(x)
2f ′(x)2 − f(wk−1(x)) f ′′(x)

. (1.4)

Hence wk(x) = F k(w0) = F k+1(x) for k ∈ N, where F k(w0) = F ◦
F ◦ · · · ◦ F (w0) denotes a k-fold composite map of F evaluated at w0.
As a result of the preceding analysis, we have constructed an iterative
method with x0 ∈ R

xn+1 = F k+1(xn) = g(xn) (1.5)

which is called k-fold pseudo-Halley’s method. If k = 0, the method be-
comes classical Halley’s method[2,3,11] and has the cubic convergence as
shown from Halley’s method and other methods of Laguerre’s type[4,8].
If k = 1, it is simply called pseudo-Halley’s method.

2. Error analysis

This section will extensively analyze the error of k-fold pseudo-Halley’s
method by careful investigation of the order of convergence and the as-
ymptotic error constant. Since f ′(α) 6= 0 due to the simplicity of α, it
can be shown from (1.4) and (1.5) that, after induction on k ∈ N,

wk(α) = α, for all k ∈ N ∪ {0}, (2.1)

A direct computation from (1.3) finally gives

w0
′(α) =

d

dx
w0(x)

∣∣∣
x=α

= 0, w0
′′(α) = 0, w0

′′′(α) = 6(c2
2 − c3), (2.2)
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with cj = f (j)(α)
j!f ′(α) for j = 2 and 3.

Recalling the definition of wk(x) from (1.4), we find that for k ∈ N

ηk(x) = − 2f(wk−1(x)) f ′

2f ′2 − f(wk−1(x)) f ′′
, (2.3)

where, for notational convenience, we let

ηk(x) = wk(x)− wk−1(x), f ′ = f ′(x), f ′′ = f ′′(x). (2.4)

Since the current analysis suffices to investigate the convergence behavior
near a sufficiently small neighborhood of α where (2.3) is well-defined,
it is convenient to rewrite in the following form:

2f ′2 · ηk = f(wk−1(x)) · {f ′′ · ηk − 2f ′}. (2.5)

Differentiating (2.5) with respect to x and evaluating at x = α gives

4f ′f ′′ · ηk + 2f ′2 · η′k
∣∣∣
x=α

= f ′(wk−1)w′k−1 · {f ′′ · ηk − 2f ′}
∣∣∣
x=α

+ f(wk−1) · {f ′′′ · ηk + f ′′ · η′k − 2f ′′}
∣∣∣
x=α

, (2.6)

from which it follows that, after simplification, 2f ′(α)2 ·w′k(α) = 0 lead-
ing to the relation for all k ∈ N

w′k(α) = 0. (2.7)

Similarly, differentiating (2.5) twice with respect to x and evaluating
at x = α we get

4(f ′′2 + f ′f ′′′) · ηk + 8f ′f ′′ · η′k + 2f ′2 · η′′k
∣∣∣
x=α

= (f ′′ · ηk − 2f ′) ·
(
f ′′(wk−1) · w′k−1

2 + f ′(wk−1) · w′′k−1

) ∣∣∣
x=α

+ 2f ′(wk−1) · w′k−1 ·
(
f ′′′ · ηk + f ′′ · η′k − 2f ′′

) ∣∣∣
x=α

,

from which it follows that, after simplification, 2f ′(α)2 · w′′k(α) = 0
leading to the relation for all k ∈ N

w′′k(α) = 0. (2.8)

By continuing differentiation (2.5) m times with respect to x and eval-
uation at x = α, we are able to establish the following Lemma 2.1.
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Lemma 2.1. Let w
(m)
k (α) = dm

dxm wk(x)|x=α for any k, m ∈ N ∪ {0}.
For the given function f having a simple zero α as stated in Section 1,

we further denote cj = f (j)(α)
j!f ′(α) for j = 2 and 3. Then the following holds.

w
(m)
k (α) =





α, if m = 0.
0, if 1 ≤ m ≤ k + 2.
(k + 3)! 2kc2

k(c2
2 − c3), if m = k + 3.

(2.9)

Proof. The assertion is clear when k = 0 or m = 0 from (2.1),(2.2)
and (2.7). Thus, it suffices to consider k, m ∈ N as follows:

w
(m)
k (α) =

{
0, if 1 ≤ m ≤ k + 2.
(k + 3)! 2kc2

k(c2
2 − c3), if m = k + 3.

(2.10)

The remaining proof will be completed by induction on m ≥ 1. For
m = 1 and m = 2, the assertion holds in view of (2.7) and (2.8). Suppose
now (2.10) holds for m ≥ 1. By differentiating (m + 1) times both sides
of (2.5) with respect to x via Leibnitz Rule[6] and evaluating at x = α
we obtain

2
m+1∑

r=0

m+1Cr · (f ′2)(m+1−r) · η(r)
k

=
m+1∑

r=0

m+1Cr ·H(m+1−r) · {(f ′′ · ηk

)(r) − 2f (r+1)}, (2.11)

where mCr = m!
(m−r)!r! ,H = f(wk−1(x)). According to the induction

hypothesis, we have for k ∈ N the following relation

η
(m)
k (α) = w

(m)
k (α)− w

(m)
k−1(α) =

{
0, if 1 ≤ m ≤ k + 1.

−w
(m)
k−1(α), if m = k + 2.

(2.12)

Since η
(r)
k (α) = w

(r)
k (α) − w

(r)
k−1(α) = 0 for 0 ≤ r ≤ m − 1 ≤ k,

by inspection of (2.12), we find that the left side of (2.11) has possible
nonvanishing terms for r = m and r = m + 1 as follows:

2
[
(m+1)(f ′2)′(α)·

(
w

(m)
k (α)−w

(m)
k−1(α)

)
+f ′2(α)·

(
w

(m+1)
k (α)−w

(m+1)
k−1 (α)

)]

= 2
[
(m + 1)2f ′(α)f ′′(α) ·

(
w

(m)
k (α)− w

(m)
k−1(α)

)

+f ′2(α) ·
(
w

(m+1)
k (α)− w

(m+1)
k−1 (α)

)]
. (2.13)

Let us look at the factor H(m+1−r) in the right side of (2.11). In view
of the fact that H ′ = f ′(wk−1) · w′k−1, we obtain via Leibnitz Rule:



Error analysis of k-fold Pseudo-Halley’s method finding a simple zero 15

H(m+1−r)(x) = H ′(m−r)(x)

=

{ ∑m−r
j=0 m−rCjf

′(wk−1)
(m−r−j)w

(j+1)
k−1 (x), if 0 ≤ r ≤ m.

H(x), if r = m + 1.
(2.14)

Since H(α) = f(wk−1(α)) = f(α) = 0 for r = m + 1, it is sufficient to
consider the values of r ranging 0 ≤ r ≤ m in (2.14). We observe that
the induction hypothesis in addition to (2.10) also states

w
(m)
k−1(α) =

{
0, if 1 ≤ m ≤ k + 1,

w
(m)
k−1(α), if m = k + 2.

(2.15)

Due to the fact that

w
(j+1)
k−1 (α) =

{
0, if 1 ≤ j + 1 ≤ m ≤ k + 1,

w
(m+1)
k−1 (α), if j + 1 = m + 1 = k + 3

(2.16)

and j +1 ranges 1 ≤ j +1 ≤ m+1, the summation in (2.14) has possible
nonzero values for j = m − 1 and m, i.e., for r = 0 and r = 1. Hence
(2.14) yields the following relations for x = α:

(i) when r = 0

H(m+1)(α) =
m∑

j=0

mCjf
′(wk−1)

(m−j)
w

(j+1)
k−1

∣∣∣
x=α

= f ′(α)w(m+1)
k−1 (α)

(2.17)
in view of the first relation in (2.16) with 1 ≤ m ≤ k + 2.

(ii) when r = 1

H(m)(α) =
m−1∑

j=0

m−1Cjf
′(wk−1)

(m−1−j)
w

(j+1)
k−1

∣∣∣
x=α

= f ′(α)w(m)
k−1(α)

(2.18)
in view of the first relation in (2.16) with 1 ≤ m ≤ k + 2.

Substituting (2.17) and (2.18) into the right side of (2.14) we find,
after the evaluation at x = α, from (2.13) that for 1 ≤ m ≤ k + 2

2
[
(m + 1)2f ′(α)f ′′(α) ·

(
w

(m)
k (α)− w

(m)
k−1(α)

)

+f ′2(α) ·
(
w

(m+1)
k (α)− w

(m+1)
k−1 (α)

)]

= −2f ′2(α) · w(m+1)
k−1 (α)− 2(m + 1)f ′(α)f ′′(α) · w(m)

k−1(α), (2.19)
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using wk(α) − wk−1(α) = 0 = w′k(α) − w′k−1(α) from (2.1), (2.2) and
(2.7).

Upon simplification of (2.19) with f ′(α) 6= 0 we obtain for 1 ≤ m ≤
k + 2

w
(m+)
k (α) = −(m + 1) · c · (w(m)

k (α)− w
(m)
k−1(α), (2.20)

where c = f ′′(α)/f ′(α). Further computation of (2.20) in view of (2.10)
and (2.15) gives the following relation:

w
(m+1)
k (α) =

{
0, if 1 ≤ m ≤ k + 1,

c(m + 1) · w(m)
k−1(α), if m = k + 2.

(2.21)

The second relation in (2.21) yields inductively for m = k + 2 that

w
(m+1)
k (α) = w

(k+3)
k (α) = c(k+3) w

(k+2)
k−1 (α) = c2 (k+3)(k+2) w

(k)
k−2(α)

= (k + 3)(k + 2)(k + 1) · · · 4 · · · ck · w0
′′′(α) =

(k + 3)!
3!

ck · w0
′′′(α)

= (k + 3)! 2k · c2
k(c2

2 − c3) (2.22)

using (2.2). Hence (2.10) also holds for m+1, completing the proof.

The preceding analysis immediately leads us to the following main
theorem.

Theorem 2.2. Let k ∈ N∪ {0} be given and α be a simple real zero
of the smooth function f described in Section 1. Then k-fold pseudo-
Halley’s method defined by (1.5) is at least of order k+3 and its asymp-

totic error constant η is given by 2k · |c2
k · (c2

2 − c3)|, where cj = f (j)(α)
j!f ′(α)

for j = 2 and 3.

Proof. Let g(x) = wk(x) = F k+1(x) as described in (1.3), (1.4) and
(1.5). Define the iteration xn+1 = g(xn) with x0 chosen in a sufficiently
small compact neighborhood of α. Further we let en = xn − α for
n ∈ N∪{0}. Then Lemma 2.1 together with (1.2) yields the asymptotic
error constant η and the order of convergence p = k + 3 shown below

η = lim
n→∞

∣∣∣ en+1

en
k+3

∣∣∣ =
1

(k + 3)!
|g(k+3)(α)| = |w(k+3)

k (α)|
(k + 3)!

= 2k·|c2
k·(c2

2−c3)|,

which completes the proof.
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3. Numerical experiments with remarks

Based on the discussion in Sections 1 and 2, we first construct a zero-
finding algorithm with the aid of symbolic and computational ability of
Mathematica[8] as follows.

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. For k ∈ N ∪ {0}, construct the iteration function g = F k+1

with the given function f having a simple zero α, as stated in Section 1.
Step 2. Set the minimum number of precision digits. With exact zero α
or most accurate zero, supply the theoretical asymptotic error constant
η. Set the error range ε, the maximum iteration number nmax and the
initial value x0. Compute f(x0) and e0 = |x0 − α |.
Step 3. Compute xn+1 = g(xn) for 0 ≤ n ≤ nmax and display the
computed values of n, xn, f(xn), en = |xn − α|, |en+1/en

k+3| and η.

According to the above algorithm, we have conducted numerical ex-
periments for a variety of test functions. The numerical results for ap-
proximated zeros of f(x) are computed with the aid of Mathematica
programming. The limited space allows us to illustrate only typical
computational results for several test functions shown below.

(1) f(x) = x cos(πx) + 3
4 + 1

4 x2 e−(x−1)2 , α = 1.

(2) f(x) = sin2 x− x2 + 1, α = 1.40449164821534 · · · 80742.

(3) f(x) = x2 sin2 x + ex2 cos x sin x − 28,
α = 4.62210416355283 · · · 82937.

The experimental results are summarized in Tables 1-3 and appar-
ently show a good agreement with the theory presented in this paper.
The symbolic computation of f ′(x) and f ′′(x)in (1.4) has been easily
done with the aid of Mathematica. To maintain sufficient accuracy and
keep track of the asymptotic error constant requiring highly accurate
arithmetic, the minimum number of precision digits was chosen as 350
by assigning $MinPrecision=350 in Mathematica. Only the first 15 and
the last 5 significant digits of the most accurate α were displayed for
each test function (2) and (3) due to a limited paper space.

These two computed solutions show better results than those of Weer-
akoon and Fernando[9]. The reason is explained as follows: In test func-
tion (2), although 15 significant digits are listed for the solution their
result is found to be accurate up to only 12 digits out of them. In test
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Table 1. Convergence for f(x) = x cos(πx) + 3
4

+ 1
4
x2e−(x−1)2 ,

α = 1.

k n xn f(xn) en = | xn − α | en+1/en
k+3 η

0 0.930000000000000 0.0575655 0.0700000
1 0.992548043649202 0.00399817 0.00745196 21.72582026
2 0.999964985280326 0.0000175134 0.0000350147 84.61351691

0 3 0.999999999995443 2.27868× 10−12 4.55737× 10−12 106.1602832 106.2786954

4 1.000000000000000 5.02989× 10−33 1.00598× 10−32 106.2786954
5 1.000000000000000 5.40980× 10−95 1.08196× 10−94 106.2786954

6 1.000000000000000 6.73054× 10−281 1.34611× 10−280 106.2786954
7 1.000000000000000 8.86187× 10−367 8.86187× 10−367

0 0.930000000000000 0.0575655 0.0700000
1 0.996161339824199 0.00199179 0.00383866 159.8775583
2 0.999999626662722 1.86669× 10−7 3.73337× 10−7 1719.422827 2097.85736

1 3 1.000000000000000 2.03771× 10−23 4.07542× 10−23 2097.815905

4 1.000000000000000 2.89359× 10−87 5.78718× 10−87 2097.857360
5 1.000000000000000 1.17656× 10−342 2.35312× 10−342

0 0.930000000000000 0.0575655 0.0700000
1 0.997950127022885 0.00104563 0.00204987 1219.654297
2 0.999999998709524 6.45238× 10−10 1.29048× 10−9 35654.56543 41410.04447

2 3 1.000000000000000 7.41012× 10−41 1.48202× 10−40 41410.04052
4 1.000000000000000 1.48031× 10−195 2.96061× 10−195 41410.04447

5 1.000000000000000 −8.86187× 10−367 8.86187× 10−367

0 0.930000000000000 0.0575655 0.0700000
1 0.998886423283940 0.000562902 0.00111358 9465.245910

3 2 0.999999999998597 7.01642× 10−13 1.40328× 10−12 735910.0977 817401.5144

3 1.000000000000000 3.12089× 10−66 6.24179× 10−66 817401.5143
4 1.000000000000000 −8.86187× 10−367 8.86187× 10−367

0 0.930000000000000 0.0575655 0.0700000
1 0.999389708402777 0.000306983 0.000610292 74105.61406

4 2 1.000000000000000 2.37056× 10−16 4.74113× 10−16 15035564.45 16134859.17

3 1.000000000000000 4.34416× 10−101 8.68831× 10−101 16134859.17
4 1.000000000000000 0 0

function (3), however, their result appears to be very poor or exception-
ally wrong since it matches our result(strongly believed to be accurate
up to 335 significant digits) with only the first significant digit.

The error bound ε for | xn − α | < ε was chosen as 0.5 × 10−335 for
the current experiments. As can be seen in Tables 1-3, the number of
computation gets smaller due to high-order convergence as k increases.
For each k, the order of convergence has been confirmed to be of at least
k + 2. The computed asymptotic error constants have shown to be in
good agreement with the theoretical asymptotic error constants η up to
10 significant digits. Even though the computed root was rounded to
maintain 335 significant digits, we list it only up to 15 significant digits,
due to a limited space.

Although not shown here, the error analysis stated in Theorem 1
has been confirmed through many additional experiments. This new
development will play a crucial role in accurate computation of zeros
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Table 2. Convergence for f(x) = sin2 x− x2 + 1, α = 1.40449164821534 · · · 80742.

k n xn f(xn) en = | xn − α | |en+1/en
k+3| η

0 1.13000000000000 0.541061 0.274492
1 1.38975140172492 0.0361703 0.0147402 0.7127173662

2 1.40448993177358 4.26101× 10−6 1.71644× 10−6 0.5359383508

0 3 1.40449164821534 6.60702× 10−18 2.66147× 10−18 0.5263003445 0.5262992283
4 1.40449164821534 2.46309× 10−53 9.92191× 10−54 0.5262992283

5 1.40449164821534 1.27615× 10−159 5.14066× 10−160 0.5262992283
6 1.40449164821534 −8.86187× 10−367 1.28503× 10−366

0 1.13000000000000 0.541061 0.274492
1 1.41342297971840 -0.0223271 0.00893133 1.573256988
2 1.40449165334135 −1.27252× 10−8 5.12601× 10−9 0.8055912366 0.8247855728

1 3 1.40449164821534 −1.41366× 10−33 5.69455× 10−34 0.8247855617

4 1.40449164821534 −2.15309× 10−133 8.67318× 10−134 0.8247855728
5 1.40449164821534 −8.86187× 10−367 1.28503× 10−366

0 1.13000000000000 0.541061 0.274492
1 1.39816914793475 0.0156177 0.00632250 4.057356628
2 1.40449164820195 3.32555× 10−11 1.33961× 10−11 1.325971517 1.29255603

2 3 1.40449164821534 1.38429× 10−54 5.57624× 10−55 1.292556030

4 1.40449164821534 1.72999× 10−271 6.96880× 10−272 1.292556030
5 1.40449164821534 −8.86187× 10−367 1.28503× 10−366

0 1.13000000000000 0.541061 0.274492
1 1.40854352019419 -0.0100906 0.00405187 9.472855340

3 2 1.40449164821535 −2.17682× 10−14 8.76876× 10−15 1.981545148 2.025618713

3 1.40449164821534 −2.28598× 10−84 9.20847× 10−85 2.025618713
4 1.40449164821534 −8.86187× 10−367 1.28503× 10−366

0 1.13000000000000 0.541061 0.274492
1 1.40171240982554 0.00688436 0.00277924 23.67128614

4 2 1.40449164821534 1.02869× 10−17 4.14381× 10−18 3.235332535 3.17443196

3 1.40449164821534 1.65328× 10−121 6.65982× 10−122 3.174431960

4 1.40449164821534 −8.86187× 10−367 1.28503× 10−366

for the nonlinear algebraic equation. The future study will include the
cases when zeros are multiple.
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Table 3. Convergence behavior for f(x) = x2 sin2 x +

ex2 cos x sin x − 28, α = 4.62210416355283 · · · 82937.

k n xn f(xn) en = | xn − α | |en+1/en
k+3| η

0 4.39000000000000 316.831 0.232104
1 4.51250419256673 44.1560 0.109600 8.765196287
2 4.59453001886434 4.58122 0.0275741 20.94453547
3 4.62128965684487 0.102228 0.000814507 38.84977563

0 4 4.62210413893741 3.06364× 10−6 2.46154× 10−8 45.55366887 45.74465654
5 4.62210416355284 8.49166× 10−20 6.82280× 10−22 45.74465079

6 4.62210416355284 1.80825× 10−60 1.45287× 10−62 45.74465654

7 4.62210416355284 1.74604× 10−182 1.40289× 10−184 45.74465654
8 4.62210416355284 1.10998× 10−361 6.02124× 10−364

0 4.39000000000000 316.831 0.232104
1 4.52370746660951 35.1317 0.0983967 33.90383266
2 4.60512100263056 2.52261 0.0169832 181.1742387

1 3 4.62204581050282 0.00726700 0.0000583531 701.4382779 942.1375541

4 4.62210416355283 1.35822× 10−12 1.09129× 10−14 941.2075845
5 4.62210416355284 1.66304× 10−51 1.33620× 10−53 942.1375541

6 4.62210416355284 3.73798× 10−207 3.00335× 10−209 942.1375541

7 4.62210416355284 −2.80859× 10−362 6.07440× 10−365

0 4.39000000000000 316.831 0.232104
1 4.53252079854156 29.0741 0.0895834 132.9880802
2 4.61181230635645 1.42519 0.0102919 1783.844085

2 3 4.62210249710035 0.000207411 1.66645× 10−6 14431.92218 19403.86567

4 4.62210416355284 3.10358× 10−23 2.49363× 10−25 19402.93657

5 4.62210416355284 2.32852× 10−117 1.87089× 10−119 19403.86567
6 4.62210416355284 1.97664× 10−362 1.54680× 10−365

0 4.39000000000000 316.831 0.232104
1 4.53975981567950 24.7062 0.0823443 526.6671228

3 2 4.61603689328116 0.804029 0.00606727 19462.13920

3 4.62210414794708 1.94230× 10−6 1.56058× 10−8 312841.8983 399633.7917

4 4.62210416355284 7.18459× 10−40 5.77260× 10−42 399633.5389
5 4.62210416355284 1.84044× 10−240 1.47874× 10−242 399633.7917

6 4.62210416355284 −2.70854× 10−362 1.69745× 10−364

0 4.39000000000000 316.831 0.232104
1 4.54587822514980 21.4005 0.0762259 2100.497952

4 2 4.61865212550726 0.445227 0.00345204 230863.9470 8230688.162

3 4.62210416351268 4.99863× 10−9 4.01625× 10−11 6875293.008
4 4.62210416355284 1.72667× 10−64 1.38732× 10−66 8230688.145

5 4.62210416355284 1.91975× 10−362 7.75011× 10−365
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