JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 1, March 2007

ON STRONG C-INTEGRAL OF BANACH-VALUED FUNCTIONS

Dafang Zhao* and Guoju Ye**

ABSTRACT. In this paper, we define and study the Banach-valued C-integral and strong C-integral, We prove that the C-integral and the strong C-integral are equivalent if and only if the Banach space is finite dimensional. We also study the primitive of the strong C-integral in terms of the C-variational measures.

1. Introduction

In 1996 B.Bongiorno introduced a constructive integration process of Riemann type, called C-integral, which is the smallest integral that includes the Lebesgue integral and derivatives. Some properties of the C-integral of real-valued functions were studied in [1, 2, 7].

In this paper, we define and study the C-integral and the strong C-integral of functions mapping an interval [a,b] into a Banach space X. We prove that the C-integral and the strong C-integral are equivalent if and only if the Banach space is finite dimensional. If the function $F: \mathcal{I} \to X$ is differentiable almost everywhere on [a, b], then it is the indefinite strong C-integral of f if and only if the C-variational measure V_*F is absolutely continuous. Consequently, we prove that every function of bounded variation is a multiplier for the strong C-integral.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^* . \mathcal{I} denote the family

Key words and phrases: C-integral, strong C-integral, C-variational measure.

Received November 2, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28B05, 26A39.

Supported by NNSF of China (10571085) and by Science Foundation of Hohai University.

of all subintervals of [a, b]. $\overline{co}(Y)$ denote the closed convex hull of the set Y if $Y \subset X$.

A partition D is a finite collection of interval-point pairs $\{([u_i, v_i], \xi_i)\}_{i=1}^n$, where $\{[u_i, v_i]\}_{i=1}^n$ are non-overlapping subintervals of [a, b]. $\delta(\xi)$ is a positive function on [a, b], i.e. $\delta(\xi) : [a, b] \to \mathbb{R}^+$. We say that D = $\{([u_i, v_i], \xi_i)\}_{i=1}^n$ is

(1) a partial partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] \subset [a, b]$,

(2) a partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b]$,

(3) δ - fine McShane partition of [a, b] if $[u_i, v_i] \subset B(\xi_i, \delta(\xi_i)) =$ $(\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in [a, b]$ for all i=1,2,...,n,

(4) δ - fine *C*-partition of [a, b] if it is a δ - fine McShane partition of [a, b] and satisfying the condition

$$\sum_{i=1}^{n} dist(\xi_i, [u_i, v_i]) < \frac{1}{\varepsilon},$$

here $dist(\xi_i, [u_i, v_i]) = inf\{|t_i - \xi_i| : t_i \in [u_i, v_i]\}.$

Given a δ - fine *C*-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ we write

$$S(f, D) = \sum_{i=1}^{n} f(\xi_i)(v_i - u_i)$$

for integral sums over D, whenever $f : [a, b] \to X$.

DEFINITION 2.1. A function $f : [a, b] \to X$ is C-integrable if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi): [a,b] \to R^+$ such that

$$\|S(f,D) - A\| < \epsilon$$

for each δ - fine *C*-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. A is called the *C*-integral of f on [a, b], and we write $A = \int_a^b f$ or $A = (C) \int_a^b f$. The function f is C-integrable on the set $E \subset [a, b]$ if the function

 $f\chi_E$ is C-integrable on [a, b]. We write $\int_E f = \int_a^b f\chi_E$.

The basic properties of the C-integral, for example, linearity and additivity with respect to intervals can be founded in [7]. We do not present them here. The reader is referred to [7] for the details.

LEMMA 2.2. (Saks-Henstock) Let $f : [a, b] \to X$ is C-integrable on [a,b]. Then for $\varepsilon > 0$ there is a positive function $\delta(\xi) : [a,b] \to R^+$ such that

$$\|S(f,D) - \int_a^b f\| < \epsilon$$

for each δ - fine C-partition $D = \{([u, v], \xi)\}$ of [a, b]. Particularly, if $D' = \{([u_i, v_i], \xi_i)\}_{i=1}^m$ is an arbitrary δ - fine partial C-partition of [a, b], we have

$$||S(f, D') - \sum_{i=1}^{m} \int_{u_i}^{v_i} f|| \le \epsilon.$$

Proof. The proof is similar to the case for Banach-valued Henstock integrable functions and the reader is referred to [9, Lemma 3.4.1.] for details.

THEOREM 2.3. Let $f : [a, b] \to X$ is C-integrable on [a, b].

(1) for each $x^* \in X^*$, the function x^*f is C-integrable on [a, b] and $\int_a^b x^*f = x^*(\int_a^b f)$. (2) If $T : X \to Y$ is a continuous linear operator, then Tf is C-

integrable on [a, b] and $\int_a^b Tf = T(\int_a^b f)$.

Proof. The proof is too easy and will be omitted. The reader is referred to [10, Theorem 2.9.] for details.

DEFINITION 2.4. A function $f:[a,b] \to X$ is strongly C-integrable if there exists an additive function $F: \mathcal{I} \to X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi) : [a, b] \to R^+$ such that

$$\sum_{i=1}^{n} \|f(\xi_i)(v_i - u_i) - F(u_i, v_i)\| < \epsilon$$

for each δ - fine *C*-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. We denote $F(u_i, v_i) = F(v_i) - F(u_i).$

THEOREM 2.5. Let X be a Banach space of finite dimension. f: $[a,b] \to X$ is C-integrable on [a,b] if and only if f is strongly C-integrable on [a, b].

Proof (Sufficiency). From the definitions of the strong C-integral and C-integral, if f is strongly C-integrable on [a, b], then f is C-integrable on [a, b].

Proof (Necessity). f is C-integrable on [a, b], then there is a positive function $\delta(\xi) : [a, b] \to R^+$ such that

$$\|\sum f(\xi)(v-u) - F(u,v)\| < \epsilon$$

for each δ -fine *C*-partition $D = \{([u, v], \xi)\}$ of [a, b]. Let $\{e_1, e_2, \cdots, e_n\}$ be a base of X and $g_i : [a, b] \to R$ $(i = 1, 2, \cdots, n)$. By the Hahn-Banach Theorem, for each e_i there is $x_i^* \in X^*$ such that

(2.1)
$$x_i^*(e_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

for $i, j = 1, 2, \dots, n$ and therefore $x_i^*(f) = \sum_{j=1}^n g_j x_i^*(e_j) = g_i$. Since $g_i : [a, b] \to R$ is C-integrable on [a, b] from Theorem 2.3, for each $\varepsilon > 0$ there is a positive function $\delta_i(\xi) : [a, b] \to R^+$ such that

$$|S(g_i, D_i) - \sum \int_u^v g_i| < \epsilon$$

for each δ_i - fine *C*-partition $D_i = \{([u, v], \xi)\}$ of [a, b]. By an easy adaptation of Saks-Henstock Lemma we have

$$\sum |g_i(\xi)(v-u) - \int_u^v g_i| < 2\epsilon.$$

We also have

$$F(u,v) = \int_{u}^{v} f = \int_{u}^{v} \sum_{i=1}^{n} g_{i}e_{i} = \sum_{i=1}^{n} \int_{u}^{v} g_{i}e_{i} = \sum_{i=1}^{n} e_{i}G_{i}(u,v)$$

where $G_i(u,v) = \int_u^v g_i$. Let $\delta(\xi) < \delta_i(\xi)$ for $i = 1, 2, \dots, n$ and consequently

$$\sum \|f(\xi)(v-u) - F(u,v)\| \\ = \sum \|\sum_{i=1}^{n} g_i(\xi)e_i(v-u) - \sum_{i=1}^{n} e_iG_i(u,v)\| \\ \le \sum_{i=1}^{n} \|e_i\| \sum |g_i(\xi)(v-u) - G_i(u,v)| \\ < \epsilon \cdot \sum_{i=1}^{n} \|e_i\|$$

for each δ - fine *C*-partition $D = \{([u, v], \xi)\}$ of [a, b]. Hence *f* is strongly C-integrable on [a, b].

3. the C-variational measure and the strong C-integral

Let $F : [a,b] \to X$, arbitrary $E \subset [a,b]$ and a positive function $\delta(\xi) : E \to R^+$, Let us set

$$V(F, \delta, E) = \sup_{D} \sum_{i} \|F(u_i, v_i)\|$$

where the supremum is take over all δ - fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b] with $\xi_i \in E$. We put

$$V_*F(E) = \lim_{\varepsilon \to 0} \inf_{\delta} V(F, \delta, E)$$

where the infimum is take over all function $\delta(\xi): E \to R^+$.

It is easy to know that the set function $V_*F(E)$ is a Borel metric outer measure, known as the C-variational measure generated by F.

DEFINITION 3.1. $V_*F(E)$ is said to be absolutely continuous (AC) on a set E if for each set $N \subset E$ such that $V_*F(N) = 0$ whenever $\mu(N) = 0$.

DEFINITION 3.2. A function $F : [a, b] \to X$ is differentiable at $\xi \in [a, b]$ if there is a $f(\xi) \in X$ such that

$$\lim_{\delta \to 0} \|\frac{F(\xi + \delta) - F(\xi)}{\delta} - f(\xi)\| = 0.$$

We denote $f(\xi) = F'(\xi)$ the derivative of F at ξ .

THEOREM 3.3. Let $F : \mathcal{I} \to X$ be differentiable almost everywhere on [a, b]. Then F is the indefinite strong C-integral of f if and only if the C-variational measure V_*F is AC.

Proof (Necessity). Let $E \subset [a, b]$ and $\mu(E) = 0$. Assume $E_n = \{\xi \in E : n - 1 \leq ||f(\xi)|| < n\}$ for $n = 1, 2, \cdots$. Then we have $E = \bigcup E_n$ and $\mu(E_n) = 0$, so there are open sets G_n such that $E_n \subset G_n$ and $\mu(G_n) < \frac{\epsilon}{n \cdot 2^n}$.

By the Saks-Henstock Lemma, there exists a positive function δ_0 such that

$$\sum \|f(\xi_i)(v_i - u_i) - F(u_i, v_i)\| < \epsilon$$

for each δ_0 - fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b]. For $\xi \in E_n$, take $\delta_n(\xi) > 0$ such that $B(\xi, \delta_n(\xi)) \subset G_n$. Let

$$\delta(\xi) = \min\{\delta_0(\xi), \delta_n(\xi)\}$$

Assume $D' = \{([u, v], \xi)\}$ is a δ - fine partial C-partition with $\xi \in E$. We have

$$\begin{split} \sum \|F(u,v)\| &= \sum \|F(u,v) - f(\xi)(v-u) + f(\xi)(v-u)\| \\ &\leq \sum \|F(u,v) - f(\xi)(v-u)\| + \sum \|f(\xi)(v-u)\| \\ &< \epsilon + \sum_{n} \sum_{\xi \in E_{n}} \|f(\xi)(v-u)\| \\ &< \epsilon + \sum_{n} n \frac{\epsilon}{n \cdot 2^{n}} = 2\epsilon \end{split}$$

This shows that $V_*F(E) < 2\epsilon$. Hence the C-variational measure V_*F is AC as desired.

Proof (Sufficiency). There exists a set $E \subset [a, b]$ be of measure zero such that $f(\xi) \neq F'(\xi)$ or $F'(\xi)$ does not exist for $\xi \in E$. We can define a function as follows

(3.1)
$$f(x) = \begin{cases} F'(\xi) & \text{if } \xi \in [a, b] \backslash E, \\ \theta & \text{if } \xi \in E. \end{cases}$$

Then for $\xi \in [a, b] \setminus E$, by the definition of derivative, for each $\varepsilon > 0$, there is a positive function $\delta_1(\xi)$ such that

$$\|f(\xi)(v-u) - F(u,v)\| < \frac{\epsilon^2}{1 + \epsilon(b-a)} (dist(\xi, [u,v]) + v - u)$$

for each interval $[u, v] \subset (\xi - \delta_1(\xi), \xi + \delta_1(\xi)).$

 V_*F is AC, then for $\xi \in E$, there is a positive function $\delta_2(\xi)$ such that

$$\sum \|F(u,v)\| < \epsilon$$

for each δ_2 - fine partial C-partition $D_0 = \{([u, v], \xi)\}$ with $\xi \in E$.

Define a positive function $\delta(\xi)$ as follows

(3.2)
$$\delta(\xi) = \begin{cases} \delta_1(\xi) & \text{if } \xi \in [a,b] \setminus E, \\ \delta_2(\xi) & \text{if } \xi \in E. \end{cases}$$

6

Then for each δ - fine *C*-partition of [a, b], we have

$$\begin{split} &\sum_{\xi \in E} \|f(\xi)(v-u) - F(u,v)\| \\ &= \sum_{\xi \in E} \|F(u,v) - f(\xi)(v-u)\| + \sum_{\xi \in [a,b] \setminus E} \|F(u,v) - f(\xi)(v-u)\| \\ &\leq \epsilon + \frac{\epsilon^2}{1 + \epsilon(b-a)} \sum_{\xi \in [a,b] \setminus E} (dist(\xi, [u,v]) + v - u) \\ &< \epsilon + \frac{\epsilon^2}{1 + \epsilon(b-a)} (\frac{1}{\epsilon} + b - a) = 2\epsilon \end{split}$$

Hence f is strong C-integrable on [a, b] with indefinite strong C-integral F.

DEFINITION 3.4. Let $G : [a, b] \to R$. A function $F : [a, b] \to X$ is C-Stieltjes integrable with respect to G on [a, b] if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi) : [a, b] \to R^+$ such that

$$||S(F,G,D) - A|| < \epsilon$$

for each δ - fine *C*-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], whenever

$$S(F, G, D) = \sum_{i=1}^{n} F(\xi_i) (G(v_i) - G(u_i)).$$

A is called the *C-Stieltjes integral* of F with respect to G on [a, b], and we write $A = (CS) \int_a^b F dG$.

Similar to [8, Proposition 5.], we have the following Lemma.

LEMMA 3.5. Let $G : [a, b] \to R$ be a non decreasing function. If a function $F : [a, b] \to X$ is C-Stieltjes integrable with respect to G, then for each $[u, v] \in [a, b]$, we have

$$(CS)\int_{u}^{v} FdG \in \overline{co}(\{G(u,v)x : x \in X \text{ and } x = F(\xi) \text{ for some } \xi \in [u,v]\})$$

THEOREM 3.6. Let $f : [a, b] \to X$ be strongly C-integrable on [a, b]and $F(x) = \int_a^x f$ for each $x \in [a, b]$. If $G : [a, b] \to R$ is a function of bounded variation, then Gf is strongly C-integrable and

$$\int_{a}^{b} Gf = G(b)F(b) - (CS)\int_{a}^{b} FdG.$$

Proof. Let $\epsilon > 0$, arbitrary $E \subset [a, b]$ with $\mu(E) = 0$. Assume $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ is an arbitrary δ - fine partial C-partition with $\xi_i \in E$.

It is easy to know that F is continuous on [a,b]. G is of bounded variation, then the C-Stieltjes integral $(CS) \int_a^b F dG$ exists on [a,b]. We can assume G is non decreasing and with upper bounded M > 0 on [a,b], then for each i, there are $x_1^{(i)}, x_2^{(i)}, \cdots, x_{m_i}^{(i)} \in [u_i, v_i]$ and numbers $\lambda_1^{(i)}, \lambda_2^{(i)}, \cdots, \lambda_{m_i}^{(i)}$ with $\sum_{j=1}^{m_i} \lambda_j^{(i)} = 1$ such that

$$\|\sum_{j=1}^{m_i} \lambda_j^{(i)} G(u_i, v_i) F(x_j^{(i)}) - \int_{u_i}^{v_i} F dG\| \le \frac{\epsilon G(u_i, v_i)}{n V(G, [a, b])}$$

where V(G, [a, b]) denote the variation of G over the interval [a, b].

We define a function by

$$\int_{a}^{x} Gf = H(x) = G(x)F(x) - (CS)\int_{a}^{x} FdG$$

and consequently have

$$\begin{split} \|H(v_{i}) - H(u_{i})\| \\ &= \|G(v_{i})F(v_{i}) - G(u_{i})F(u_{i}) - (CS)\int_{u_{i}}^{v_{i}}FdG\| \\ &= \|G(v_{i})[F(v_{i}) - F(u_{i})] + (G(v_{i}) - G(u_{i}))[F(u_{i}) - \sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})] + \\ &(G(v_{i}) - G(u_{i}))\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)}) - (CS)\int_{u_{i}}^{v_{i}}FdG\| \\ &\leq \|G(v_{i})| \cdot \|F(u_{i},v_{i})\| + G(u_{i},v_{i})\|F(u_{i}) - \sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})\| + \\ &\|G(u_{i},v_{i})\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)}) - (CS)\int_{u_{i}}^{v_{i}}FdG\| \\ &\leq M\|F(u_{i},v_{i})\| + G(u_{i},v_{i})\|\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}[F(u_{i}) - F(x_{j}^{(i)})]\| + \frac{\epsilon G(u_{i},v_{i})}{nV(G,[a,b])} \end{split}$$

8

On strong C-integral of Banach-valued functions

$$\leq M \|F(u_i, v_i)\| + V(G, [a, b]) \sum_{j=1}^{m_i} \lambda_j^{(i)} \|F(u_i) - F(x_j^{(i)})\| + \frac{\epsilon G(u_i, v_i)}{n V(G, [a, b])}$$

$$\leq M \|F(u_i, v_i)\| + V(G, [a, b]) \sum_{j=1}^{m_i} \lambda_j^{(i)} \|F(u_i) - F(x_{N^{(i)}}^{(i)})\| + \frac{\epsilon G(u_i, v_i)}{n V(G, [a, b])}$$

$$= M \|F(u_i, v_i)\| + V(G, [a, b]) \|F(u_i) - F(x_{N^{(i)}}^{(i)})\| + \frac{\epsilon G(u_i, v_i)}{n V(G, [a, b])}$$

where

$$||F(u_i) - F(x_{N^{(i)}}^{(i)})|| = max\{||F(u_i) - F(x_j^{(i)})||\}$$

for each $j \in \{1, 2, \dots, m_i^{(i)}\}$. V_*F is AC from Theorem 3.3, then there exists a positive function $\delta(\xi)$ such that

$$\sum_{i=1}^{n} \|F(u_i, v_i)\| < \frac{\epsilon}{M + V(G, [a, b])}.$$

Therefore

$$\begin{split} \sum_{i=1}^{n} \|H(v_i) - H(u_i)\| &\leq M \sum_{i=1}^{n} \|F(u_i, v_i)\| + \frac{\epsilon \sum_{i=1}^{n} G(u_i, v_i)}{nV(G, [a, b])} + \\ &\quad V(G, [a, b]) \sum_{i=1}^{n} \|F(u_i) - F(x_{N^{(i)}}^{(i)})\| \\ &\leq (M + V(G, [a, b])) \frac{\epsilon}{M + V(G, [a, b])} + \epsilon = 2\epsilon \end{split}$$

and it follows that V_*H is AC. We also have that H(x) is differentiable almost everywhere and H'(x) = G(x)f(x) a.e. on [a, b], then Gf is strongly C-integrable on [a, b] from Theorem 3.3.

Consequently, we can easily get the following theorem.

THEOREM 3.7. Let $f : [a,b] \to X$ and $G : [a,b] \to R$. If Gf is strongly C-integrable on [a,b] for every strongly C-integrable f, then G is equivalent to a function of bounded variation on [a,b].

Acknowledgement. The authors are grateful to Professor Luisa Di Piazza for her interesting papers [6,7,8].

References

 B. Bongiorno, On the Minimal Solution of the Problem of Primitives, J. Math. Anal. Appl. (251) (2000), No.2, 479-487.

- [2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), No.1, 117-126.
- [3] A. M. Bruckner, R. J. Fleissner and J. Fordan, The minimal integral which includeds Lebesgue integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293
- [4] R. A. Gondon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, Vol. 4, American Math. Soc., Providence, RI, 1994. MR 95m:26010.
- [5] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.
- [6] L. Di Piazza, Variational measures in the theory of the integration in R^m, Cze. J. Math. 51 (126) (2001), 95-110.
- [7] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV, (2002), 143-153.
- [8] L. Di Piazza and V. M. arraffa, The McShane, PU, and Henstock integrals of Banach valued functions, Cze. J. Math. 52 (127) (2002), 609-633.
- [9] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, (2005).
- [10] Dafang Zhao and Guoju Ye, On AP-Henstock-Stieltjes integral, J. Chungcheong Math. Soc. 19 (2) (2006), 177-188.

*

College of Science Hohai University Nanjing, 210098, People's Republic of China *E-mail*: dafangzhao@hhu.edu.cn

**

College of Science Hohai University Nanjing, 210098, People's Republic of China *E-mail*: yegj@hhu.edu.cn

10