ON THE HYERS-ULAM-RASSIAS STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION

Yang-Hi Lee*

ABSTRACT. In this paper, we prove the Hyers-Ulam-Rassias stability of a Cauchy-Jensen functional equation

$$2f(x+y,\frac{z+w}{2}) = f(x,z) + f(x,w) + f(y,z) + f(y,w).$$

1. Introduction

In 1940, S. M. Ulam [5] raised a question concerning the stability of homomorphisms: Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exists a $\delta > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality

$$d(h(xy), h(x)h(y)) < \delta$$

for all $x, y \in G_1$ then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \varepsilon$$

for all $x \in G_1$? The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_1 and G_2 are Banach spaces. In 1978, Rassias [4] gave a generalization. Recently, Găvruta [1] also obtained a further generalization of the Hyers-Ulam-Rassias theorem.

Throughout this paper, let X be normed space and Y be a Banach space. A mapping $g: X \to Y$ is called a Cauchy mapping (respectively, a Jensen mapping) if g satisfies the functional equation g(x+y) = g(x) + g(y) (respectively, $2g(\frac{x+y}{2}) = g(x) + g(y)$).

Received May 2, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B52.

Key words and phrases: stability, Cauchy-Jensen mapping, functional equation.

This work was supported by Gongju National University of Education Grant.

A mapping $f: X \times X \to Y$ is called a Cauchy-Jensen mapping[3] if f satisfies the system of equations

(1.1)
$$f(x+y,z) = f(x,z) + f(y,z),$$
$$2f(x,\frac{y+z}{2}) = f(x,y) + f(x,z).$$

It is easy to see that a mapping $f: X \times X \to Y$ is a Cauchy-Jensen mapping if and only if the mapping f satisfies the functional equation

(1.2)
$$2f(x+y,\frac{z+w}{2}) = f(x,z) + f(x,w) + f(y,z) + f(y,w)$$

for all $x, y, z, w \in X$. In 2006, Park and Bae [3] obtained the generalized Hyers-Ulam stability of (1) and (2). In this paper, I study the Hyers-Ulam-Rassias stability of (1) and (2).

2. Stability of (1) and (2)

For the given mapping $f: X \times X \to Y$, we define

$$Df(x, y, z, w) := 2f(x + y, \frac{z + w}{2}) - f(x, z)$$

$$-f(x, w) - f(y, z) - f(y, w)$$

$$D_1 f(x, y, z) := f(x + y, z) - f(x, z) - f(y, z),$$

$$D_2 f(x, y, z) := 2f(x, \frac{y + z}{2}) - f(x, y) - f(x, z).$$

for all $x, y, z, w \in X$.

THEOREM 2.1. Let $p_1, p_2, p_3, q_1, q_2, q_3, \delta_1, \delta_2, \delta_3, \delta_4$ be fixed positive real numbers with $p_1, p_2, p_3, q_1, q_2, q_3 < 1$. Let $f: X \times X \to Y$ be a mapping such that

$$(2.1) ||D_1 f(x, y, z)|| \le (||x||^{p_1} + ||y||^{p_2} + \delta_1)(||z||^{q_1} + \delta_2),$$

$$(2.2) ||D_2 f(x, y, z)|| \le (||x||^{p_3} + \delta_3)(||y||^{q_2} + ||z||^{q_3} + \delta_4)$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ such that

$$(2.3) \|f(x,y) - F_1(x,y)\| \le \left(\frac{\|x\|^{p_1}}{2 - 2^{p_1}} + \frac{\|x\|^{p_2}}{2 - 2^{p_2}} + \delta_1\right) (\|y\|^{q_1} + \delta_2),$$

$$(2.4) \|f(x,y) - f(x,0) - F_2(x,y)\| \le (\|x\|^{p_3} + \delta_3)(\frac{2^{q_2}}{2 - 2q_2}\|y\|^{q_2} + \delta_4),$$

$$(2.5)$$
 $F_1(x,y) - F_1(x,0) = F_2(x,y)$

for all $x, y \in X$. The mappings $F_1, F_2 : X \times X \to Y$ are given by

$$F_1(x,y) := \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, y), \quad F_2(x,y) := \lim_{j \to \infty} \frac{1}{2^j} f(x, 2^j y)$$

for all $x, y \in X$.

Proof. Letting y = x and replacing z by y in (2.1),

$$||f(2x,y) - 2f(x,y)|| \le (||x||^{p_1} + ||x||^{p_2} + \delta_1)(||y||^{q_1} + \delta_2)$$

for all $x, y \in X$. Thus

$$\begin{aligned} \left\| \frac{1}{2^{j}} f(2^{j} x, y) - \frac{1}{2^{j+1}} f(2^{j+1} x, y) \right\| \\ & \leq \left(\frac{2^{jp_{1}}}{2^{j+1}} \|x\|^{p_{1}} + \frac{2^{jp_{2}}}{2^{j+1}} \|x\|^{p_{2}} + \frac{\delta_{1}}{2^{j+1}} \right) (\|y\|^{q_{1}} + \delta_{2}) \end{aligned}$$

for all $x, y \in X$. For given integers $l, m \ (0 \le l < m)$,

$$\|\frac{1}{2^{l}}f(2^{l}x,y) - \frac{1}{2^{m}}f(2^{m}x,y)\|$$

$$(2.6) \qquad \leq \sum_{j=l}^{m-1} \left(\frac{2^{jp_{1}}}{2^{j+1}}\|x\|^{p_{1}} + \frac{2^{jp_{2}}}{2^{j+1}}\|x\|^{p_{2}} + \frac{\delta_{1}}{2^{j+1}}\right)(\|y\|^{q_{1}} + \delta_{2})$$

for all $x, y \in X$. By $p_1, p_2 < 1$, the sequence $\{\frac{1}{2^j}f(2^jx, y)\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\{\frac{1}{2^j}f(2^jx, y)\}$ converges for all $x, y \in X$. Define $F_1: X \times X \to Y$ by

$$F_1(x,y) := \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, y)$$

for all $x, y \in X$. Putting l = 0 and taking $m \to \infty$ in (2.6), one can obtain the inequality (2.3). By (2.1) and (2.2),

for all $x, y, z \in X$ and all j. Letting $j \to \infty$ in the above two inequalities and using $p_1, p_2, p_3 < 1$, F_1 is a Cauchy-Jensen mapping. Now, let $F'_1: X \times X \to Y$ be another Cauchy-Jensen mapping satisfying (2.3).

Then we have

$$||F_{1}(x,y) - F'_{1}(x,y)||$$

$$\leq \frac{1}{2^{n}} ||f(2^{n}x,y) - F_{1}(2^{n}x,y)|| + \frac{1}{2^{n}} ||f(2^{n}x,y) - F'_{1}(2^{n}x,y)||$$

$$\leq \left(\frac{2^{np_{1}}}{2^{n}} \frac{||x||^{p_{1}}}{2 - 2^{p_{1}}} + \frac{2^{np_{2}}}{2^{n}} \frac{||x||^{p_{2}}}{2 - 2^{p_{2}}} + \frac{\delta_{1}}{2^{n}}\right) (||y||^{q_{1}} + \delta_{2})$$

for all $n \in N$ and $x, y \in X$. As $n \to \infty$, we may conclude that $F_1(x, y) = F'_1(x, y)$ for all $x, y \in X$. Thus such a Cauchy-Jensen mapping $F_1: X \times X \to Y$ is unique.

Next, replacing y by 2y and z by 0 in (2.2), one can obtain

$$||(f(x,y) - f(x,0)) - \frac{1}{2}(f(x,2y) - f(x,0))||$$

$$\leq \frac{1}{2}(||x||^{p_3} + \delta_3)(2^{q_2}||y||^{q_2} + ||0||^{q_3} + \delta_4)$$

for all $x, y \in X$. By the same method as above, F_2 is a unique biadditive mapping which satisfies (2.4), where $F_2(x, y) := \lim_{j\to\infty} \frac{1}{2^j} f(x, 2^j y)$ for all $x, y \in X$. From (2.7) and the definitions of F_1 and F_2 , the equalities

$$F_{1}(x,y) - F_{1}(x,0) = \frac{1}{2} \Big(F_{1}(x,2y) - F_{1}(x,0) \Big),$$

$$F_{1}(x,y) - F_{1}(x,0) = \frac{1}{2^{n}} F_{1}(x,2^{n}y) - \frac{1}{2^{n}} F_{1}(x,0),$$

$$(2.8) \qquad F_{2}(x,y) = \frac{1}{2^{n}} F_{2}(x,2^{n}y)$$

hold for all $n \in N$ and for all $x, y \in X$. Hence, the inequality

$$\begin{split} \|F_1(x,y) - F_1(x,0) - F_2(x,y)\| \\ &= \|\frac{1}{2^n} F_1(x,2^n y) - \frac{1}{2^n} F_1(x,0) - \frac{1}{2^n} F_2(x,2^n y)\| \\ &= \frac{1}{2^n} \|f(x,2^n y) - F_1(x,2^n y)\| + \frac{1}{2^n} \|f(x,0) - F_1(x,0)\| \\ &+ \frac{1}{2^n} \|f(x,2^n y) - f(x,0) - F_2(x,2^n y)\| \\ &\leq \Big(\frac{\|x\|^{p_1}}{2 - 2^{p_1}} + \frac{\|x\|^{p_2}}{2 - 2^{p_2}} + \delta_1\Big) \Big(\frac{2^{nq_1}}{2^n} \|y\|^{q_1} + \frac{2\delta_2}{2^n}\Big) \\ &+ (\|x\|^{p_3} + \delta_3) \Big(\frac{2^{nq_2}}{2^n} \frac{2^{q_2}}{2 - 2^{q_2}} \|y\|^{q_2} + \frac{1}{2^n} \delta_4\Big) \end{split}$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \to \infty$ and using $q_1, q_2 < 1$, we have (2.5).

THEOREM 2.2. Let $p_1, p_2, p_3, q_1, q_2, q_3$ be fixed positive real numbers with $1 < p_1, p_2, p_3, q_1, q_2, q_3$. Let $f: X \times X \to Y$ be a mapping such that

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ such that

$$(2.11) ||f(x,y) - F_1(x,y)|| \le \left(\frac{||x||^{p_1}}{2^{p_1} - 2} + \frac{||x||^{p_2}}{2^{p_2} - 2}\right) ||y||^{q_1},$$

$$(2.12) ||f(x,y) - f(x,0) - F_2(x,y)|| \le ||x||^{p_3} \frac{2^{q_2}}{2^{q_2} - 2} ||y||^{q_2},$$

$$(2.13) F_1(x,y) - f(x,0) = F_2(x,y)$$

for all $x, y \in X$. The mappings $F_1, F_2 : X \times X \to Y$ are given by

$$F_1(x,y) := \lim_{j \to \infty} 2^j f(\frac{x}{2^j}, y), \quad F_2(x,y) := \lim_{j \to \infty} 2^j (f(x, \frac{y}{2^j}) - f(x, 0))$$

for all $x, y \in X$.

Proof. Replacing x, y, z by $\frac{x}{2}, \frac{x}{2}, y$ in (2.9) respectively, we have

$$||f(x,y) - 2f(\frac{x}{2},y)|| \le (||\frac{x}{2}||^{p_1} + ||\frac{x}{2}||^{p_2})||y||^{q_1}$$

for all $x, y \in X$. Thus

$$||2^{j} f(\frac{x}{2^{j}}, y) - 2^{j+1} f(\frac{x}{2^{j+1}}, y)|| \le \left(\left(\frac{2}{2^{p_1}}\right)^{j} ||\frac{x}{2}||^{p_1} + \left(\frac{2}{2^{p_2}}\right)^{j} ||\frac{x}{2}||^{p_2} \right) ||y||^{q_1}$$

for all $x, y \in X$. For given integers $l, m \ (0 \le l < m)$,

$$||2^{l}f(\frac{x}{2^{l}},y) - 2^{m}f(\frac{x}{2^{m}},y)||$$

$$\leq \sum_{j=l}^{m-1} \left(\left(\frac{2}{2^{p_{1}}}\right)^{j} \left\|\frac{x}{2}\right\|^{p_{1}} + \left(\frac{2}{2^{p_{2}}}\right)^{j} \left\|\frac{x}{2}\right\|^{p_{2}} \right) ||y||^{q_{1}}$$

for all $x, y \in X$. By (2.14), the sequence $\{2^j f(\frac{x}{2^j}, y)\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\{2^j f(\frac{x}{2^j}, y)\}$ converges for all $x, y \in X$. Define $F_1: X \times X \to Y$ by

$$F_1(x,y) := \lim_{j \to \infty} 2^j f(\frac{x}{2^j}, y)$$

for all $x, y \in X$. Putting l = 0 and taking $m \to \infty$ in (2.14), one can obtain the inequality (2.11). By (2.9) and (2.10),

$$||2^{j}D_{1}f(\frac{x}{2^{j}},\frac{y}{2^{j}},z)|| \leq \left(\left(\frac{2}{2^{p_{1}}}\right)^{j}||x||^{p_{1}} + \left(\frac{2}{2^{p_{2}}}\right)^{j}||y||^{p_{2}}\right)||z||^{q_{1}},$$

$$||2^{j}D_{2}f(\frac{x}{2^{j}},y,z)|| \leq \left(\frac{2}{2^{p_{3}}}\right)^{j}||x||^{p_{3}}(||y||^{q_{2}} + ||z||^{q_{3}})$$

for all $x, y, z \in X$ and all j. Letting $j \to \infty$ in the above two inequalities and using $1 < p_1, p_2, p_3, F_1$ is a Cauchy-Jensen mapping. Now, let $F_1': X \times X \to Y$ be another Cauchy-Jensen mapping satisfying (2.11). Then we have

$$||F_{1}(x,y) - F'_{1}(x,y)||$$

$$\leq 2^{n} ||f(\frac{x}{2^{n}},y) - F_{1}(\frac{x}{2^{n}},y)|| + 2^{n} ||f(\frac{x}{2^{n}},y) - F'_{1}(\frac{x}{2^{n}},y)||$$

$$\leq \left(\left(\frac{2}{2^{p_{1}}}\right)^{n} \frac{2||x||^{p_{1}}}{2^{p_{1}} - 2} + \left(\frac{2}{2^{p_{2}}}\right)^{n} \frac{2||x||^{p_{2}}}{2^{p_{2}} - 2} \right) ||y||^{q_{1}}$$

for all $n \in N$ and $x, y \in X$. As $n \to \infty$, we may conclude that $F_1(x, y) = F'_1(x, y)$ for all $x, y \in X$. Thus such a Cauchy-Jensen mapping $F_1: X \times X \to Y$ is unique.

Next, replacing z by 0 in (2.10), one can obtain

$$(2.15) ||(f(x,y) - f(x,0)) - 2(f(x,\frac{y}{2}) - f(x,0))|| \le ||x||^{p_3} ||y||^{q_2}$$

for all $x, y \in X$. By the same method as above, F_2 is a unique biadditive mapping which satisfies (2.12), where $F_2(x, y) := \lim_{j\to\infty} 2^j \left(f(x, \frac{y}{2^j}) - f(x, 0)\right)$ for all $x, y \in X$. From (2.15) and the definitions of F_1 and F_2 , the equalities

$$F_{1}(x,y) - F_{1}(x,0) = 2(F_{1}(x,\frac{y}{2}) - F_{1}(x,0)),$$

$$F_{1}(x,y) - F_{1}(x,0) = 2^{n}F_{1}(x,\frac{y}{2^{n}}) - 2^{n}F_{1}(x,0),$$

$$(2.16) \qquad F_{2}(x,y) = 2^{n}F_{2}(x,\frac{y}{2^{n}})$$

hold for all $n \in N$ and for all $x, y \in X$. By (2.11), the equality $f(x, 0) = F_1(x, 0)$ holds for all $x \in X$. Hence, by (2.11), (2.12) and the above

equalities, the inequalty

$$||F_{1}(x,y) - F_{1}(x,0) - F_{2}(x,y)||$$

$$= ||2^{n}F_{1}(x,\frac{y}{2^{n}}) - 2^{n}F_{1}(x,0) - 2^{n}F_{2}(x,\frac{y}{2^{n}})||$$

$$= 2^{n}||f(x,\frac{y}{2^{n}}) - F_{1}(x,\frac{y}{2^{n}})|| + 2^{n}||f(x,0) - F_{1}(x,0)||$$

$$+ 2^{n}||f(x,\frac{y}{2^{n}}) - f(x,0) - F_{2}(x,\frac{y}{2^{n}})||$$

$$\leq (\frac{2}{2^{q_{1}}})^{n} (\frac{||x||^{p_{1}}}{2^{p_{1}} - 2} + \frac{||x||^{p_{2}}}{2^{p_{2}} - 2})||y||^{q_{1}} + ||x||^{p_{3}} \frac{2^{q_{2}}}{2^{q_{2}} - 2} (\frac{2}{2^{q_{2}}})^{n}||y||^{q_{2}}$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \to \infty$ and using $1 < q_1, q_2$, we have (2.13).

THEOREM 2.3. Let $p_1, p_2, p_3, q_1, q_2, q_3, \delta_1, \delta_3$ be fixed positive real numbers with $p_1, p_2, p_3 < 1$ and $1 < q_1, q_2, q_3$. Let $f: X \times X \to Y$ be a mapping such that

$$||D_1 f(x, y, z)|| \le (||x||^{p_1} + ||y||^{p_2} + \delta_1) ||z||^{q_1},$$

$$||D_2 f(x, y, z)|| \le (||x||^{p_3} + \delta_3) (||y||^{q_2} + ||z||^{q_3})$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ satisfying

$$(2.17) ||f(x,y) - F_1(x,y)|| \le \left(\frac{||x||^{p_1}}{2 - 2^{p_1}} + \frac{||x||^{p_2}}{2 - 2^{p_2}} + \delta_1\right) ||y||^{q_1},$$

$$(2.18) ||f(x,y) - f(x,0) - F_2(x,y)|| \le (||x||^{p_3} + \delta_3) \frac{2^{q_2}}{2^{q_2} - 2} ||y||^{q_2},$$

$$(2.19) F_1(x,y) - f(x,0) = F_2(x,y)$$

for all $x, y \in X$. The mappings $F_1, F_2 : X \times X \to Y$ are given by (2.20)

$$F_1(x,y) = \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, y), \quad F_2(x,y) = \lim_{j \to \infty} 2^j (f(x, \frac{y}{2^j}) - f(x, 0))$$

for all $x, y \in X$.

Proof. By the similar method in the proof of Theorem 2.1 and Theorem 2.2, one obtains that there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ satisfying (2.17) and (2.18), the mappings $F_1, F_2: X \times X \to Y$ are given by (2.20), $f(x,0) = F_1(x,0)$ and the equalities in (2.16) hold for all $n \in N$

and for all $x, y \in X$. Hence, the inequality

$$\begin{aligned} \|F_{1}(x,y) - F_{1}(x,0) - F_{2}(x,y)\| \\ &= \|2^{n} F_{1}(x,\frac{y}{2^{n}}) - 2^{n} F_{1}(x,0) - 2^{n} F_{2}(x,\frac{y}{2^{n}})\| \\ &= 2^{n} \|f(x,\frac{y}{2^{n}}) - F_{1}(x,\frac{y}{2^{n}})\| + 2^{n} \|f(x,0) - F_{1}(x,0)\| \\ &+ 2^{n} \|f(x,\frac{y}{2^{n}}) - f(x,0) - F_{2}(x,\frac{y}{2^{n}})\| \\ &\leq \left(\frac{2}{2^{q_{1}}}\right)^{n} \left(\frac{\|x\|^{p_{1}}}{2 - 2^{p_{1}}} + \frac{\|x\|^{p_{2}}}{2 - 2^{p_{2}}} + \delta_{1}\right) \|y\|^{q_{1}} \\ &+ (\|x\|^{p_{3}} + \delta_{3}) \frac{2^{q_{2}}}{2^{q_{2}} - 2} \left(\frac{2}{2^{q_{2}}}\right)^{n} \|y\|^{q_{2}} \end{aligned}$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \to \infty$ and using $1 < q_1, q_2$, we have (2.19).

THEOREM 2.4. Let $p_1, p_2, p_3, q_1, q_2, q_3, \delta_2, \delta_4$ be fixed positive real numbers with $1 < p_1, p_2, p_3$ and $q_1, q_2, q_3 < 1$. Let $f: X \times X \to Y$ be a mapping such that

$$||D_1 f(x, y, z)|| \le (||x||^{p_1} + ||y||^{p_2})(||z||^{q_1} + \delta_2),$$

$$||D_2 f(x, y, z)|| \le ||x||^{p_3}(||y||^{q_2} + ||z||^{q_3} + \delta_4)$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ such that Let $f: X \times X \to Y$ be a mapping such that

$$(2.21) ||f(x,y) - F_1(x,y)|| \le \left(\frac{||x||^{p_1}}{2^{p_1} - 2} + \frac{||x||^{p_2}}{2^{p_2} - 2}\right) (||y||^{q_1} + \delta_2),$$

$$(2.22) ||f(x,y) - f(x,0) - F_2(x,y)|| \le ||x||^{p_3} \left(\frac{2^{q_2}}{2 - 2^{q_2}} ||y||^{q_2} + \delta_4\right),$$

$$(2.23) F_1(x,y) - F_1(x,0) = F_2(x,y)$$

for all $x, y \in X$. The mappings $F_1, F_2 : X \times X \to Y$ are given by

(2.24)
$$F_1(x,y) = \lim_{j \to \infty} 2^j f(\frac{x}{2^j}, y), \quad F_2(x,y) = \lim_{j \to \infty} \frac{1}{2^j} f(x, 2^j y)$$

for all $x, y \in X$.

Proof. By the similar method in the proof of Theorem 2.1 and Theorem 2.2, one obtains that there exist a unique Cauchy-Jensen mapping $F_1: X \times X \to Y$ and a unique biadditive mapping $F_2: X \times X \to Y$ satisfying (2.21) and (2.22), the mappings $F_1, F_2: X \times X \to Y$ are given by

П

(2.24) and the equalities in (2.8) hold for all $n \in N$ and for all $x, y \in X$. Hence, the inequality

$$\begin{split} |F_{1}(x,y) - F_{1}(x,0) - F_{2}(x,y)|| \\ &= \left\| \frac{1}{2^{n}} F_{1}(x,2^{n}y) - \frac{1}{2^{n}} F_{1}(x,0) - \frac{1}{2^{n}} F_{2}(x,2^{n}y) \right\| \\ &= \left\| \frac{1}{2^{n}} f(x,2^{n}y) - \frac{1}{2^{n}} F_{1}(x,2^{n}y) \right\| + \frac{1}{2^{n}} \|F_{1}(x,0) - f(x,0)\| \\ &+ \frac{1}{2^{n}} \|f(x,2^{n}y) - f(x,2^{n}0) - F_{2}(x,2^{n}y)\| \\ &\leq \left(\frac{\|x\|^{p_{1}}}{2^{p_{1}} - 2} + \frac{\|x\|^{p_{2}}}{2^{p_{2}} - 2} \right) \left((\frac{2^{q_{1}}}{2})^{n} \|y\|^{q_{1}} + \frac{2}{2^{n}} \delta_{2} \right) \\ &+ \|x\|^{p_{3}} \left((\frac{2^{q_{1}}}{2})^{n} \frac{2^{q_{2}}}{2 - 2^{q_{2}}} \|y\|^{q_{2}} + \frac{1}{2^{n}} \delta_{4} \right). \end{split}$$

Taking $n \to \infty$ and using $q_1, q_2 < 1$, we have (2.23).

COROLLARY 2.5. Let $0 < p_1, p_2 < 1$ and $0 < q_1, q_2 < 1$ or $1 < q_1, q_2$. Let $f: X \times X \to Y$ be a mapping such that

$$(2.25) ||Df(x,y,z,w)|| < (||x||^{p_1} + ||y||^{p_2} + \delta_1)(||z||^{q_1} + ||w||^{q_2} + \delta_2)$$

for all $x, y, z, w \in X$, where $\delta_2 = 0$ for $q_1, q_2 > 1$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \to Y$ such that

$$||f(x,y) - F(x,y)|| \le \left(\frac{||x||^{p_1}}{2 - 2^{p_1}} + \frac{||x||^{p_2}}{2 - 2^{p_2}} + \delta_1\right) \frac{1}{2} (||y||^{q_1} + ||y||^{q_2} + \delta_2)$$

for all $x, y \in X$ where $\delta_2 = 0$ for $q_1, q_2 > 1$. The mapping $F: X \times X \to Y$ is given by

$$F(x,y) = \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, y)$$

for all $x, y \in X$.

Proof. From (2.25), we know that

$$D_{1}f(x,y,z)\| = \|\frac{1}{2}Df(x,y,z,z)\|$$

$$\leq \frac{1}{2}(\|x\|^{p_{1}} + \|y\|^{p_{2}} + \delta_{1})(\|z\|^{q_{1}} + \|z\|^{q_{2}} + \delta_{2}),$$

$$\|D_{2}f(x,y,z)\| = \|Df(\frac{x}{2}, \frac{x}{2}, y, z) - \frac{1}{2}Df(\frac{x}{2}, \frac{x}{2}, y, y) - \frac{1}{2}Df(\frac{x}{2}, \frac{x}{2}, z, z)\|$$

$$\leq (\|\frac{x}{2}\|^{p_{1}} + \|\frac{x}{2}\|^{p_{2}} + \delta_{1})(\frac{3}{2}\|y\|^{q_{1}} + \frac{3}{2}\|z\|^{q_{2}} + 2\delta_{2} + \frac{1}{2}\|y\|^{q_{2}} + \frac{1}{2}\|z\|^{q_{1}})$$

for all $x, y \in X$. Then we can apply the similar method in the proof of Theorem 2.1 for the case $0 < q_1, q_2 < 1$ and apply the similar method in the proof of Theorem 2.3 for the case $1 < q_1, q_2$, and therefore, we get the results in this corollary.

COROLLARY 2.6. Let $1 < p_1, p_2$ and $0 < q_1, q_2 < 1$ or $1 < q_1, q_2$. Let $f: X \times X \to Y$ be a mapping such that

$$||Df(x, y, z, w)|| \le (||x||^{p_1} + ||y||^{p_2})(||z||^{q_1} + ||w||^{q_2} + \delta_2)$$

for all $x, y, z, w \in X$, where $\delta_2 = 0$ for $q_1, q_2 > 1$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \to Y$ such that

$$||f(x,y) - F(x,y)|| \le \left(\frac{||x||^{p_1}}{2^{p_1} - 2} + \frac{||x||^{p_2}}{2^{p_2} - 2}\right) \frac{1}{2} (||y||^{q_1} + ||y||^{q_2} + \delta_2)$$

for all $x, y \in X$ where $\delta_2 = 0$ for $q_1, q_2 > 1$. The mapping $F: X \times X \to Y$ is given by

$$F(x,y) = \lim_{j \to \infty} 2^{j} f(\frac{x}{2^{j}}, y)$$

for all $x, y \in X$.

Proof. We can use the same method in the proof of Corollary 2.5 and we get the results in this corollary by applying Theorem 2.2 and Theorem 2.4.

References

- [1] P. Găvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [2] D. H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [3] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. **323** (2006), 634–643.
- [4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- [5] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

*

Department of Mathematics Education Gongju National University of Education Gongju 314-060, Republic of Korea E-mail: lyhmzi@pro.gjue.ac.kr