ON THE HYERS-ULAM-RASSIAS STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION

Yang-Hi Lee*

Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability of a Cauchy-Jensen functional equation

$$
2 f\left(x+y, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w)
$$

1. Introduction

In 1940, S. M. Ulam [5] raised a question concerning the stability of homomorphisms: Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exists a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x y), h(x) h(y))<\delta
$$

for all $x, y \in G_{1}$ then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\varepsilon
$$

for all $x \in G_{1}$? The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Rassias [4] gave a generalization. Recently, Găvruta [1] also obtained a further generalization of the Hyers-Ulam-Rassias theorem.

Throughout this paper, let X be normed space and Y be a Banach space. A mapping $g: X \rightarrow Y$ is called a Cauchy mapping (respectively, a Jensen mapping) if g satisfies the functional equation $g(x+y)=$ $g(x)+g(y)\left(\right.$ respectively, $\left.2 g\left(\frac{x+y}{2}\right)=g(x)+g(y)\right)$.

[^0]A mapping $f: X \times X \rightarrow Y$ is called a Cauchy-Jensen mapping[3] if f satisfies the system of equations

$$
\begin{align*}
f(x+y, z) & =f(x, z)+f(y, z) \tag{1.1}\\
2 f\left(x, \frac{y+z}{2}\right) & =f(x, y)+f(x, z)
\end{align*}
$$

It is easy to see that a mapping $f: X \times X \rightarrow Y$ is a Cauchy-Jensen mapping if and only if the mapping f satisfies the functional equation

$$
\begin{equation*}
2 f\left(x+y, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w) \tag{1.2}
\end{equation*}
$$

for all $x, y, z, w \in X$. In 2006, Park and Bae [3] obtained the generalized Hyers-Ulam stability of (1) and (2). In this paper, I study the Hyers-Ulam-Rassias stability of (1) and (2).

2. Stability of (1) and (2)

For the given mapping $f: X \times X \rightarrow Y$, we define

$$
\begin{aligned}
D f(x, y, z, w):= & 2 f\left(x+y, \frac{z+w}{2}\right)-f(x, z) \\
& -f(x, w)-f(y, z)-f(y, w) \\
D_{1} f(x, y, z):= & f(x+y, z)-f(x, z)-f(y, z) \\
D_{2} f(x, y, z):= & 2 f\left(x, \frac{y+z}{2}\right)-f(x, y)-f(x, z)
\end{aligned}
$$

for all $x, y, z, w \in X$.
THEOREM 2.1. Let $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ be fixed positive real numbers with $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}<1$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
\left\|D_{1} f(x, y, z)\right\| & \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\delta_{1}\right)\left(\|z\|^{q_{1}}+\delta_{2}\right) \tag{2.1}\\
\left\|D_{2} f(x, y, z)\right\| & \leq\left(\|x\|^{p_{3}}+\delta_{3}\right)\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}+\delta_{4}\right) \tag{2.2}
\end{align*}
$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ such that

$$
\begin{align*}
& \text { (2.3) }\left\|f(x, y)-F_{1}(x, y)\right\| \leq\left(\frac{\|x\|^{p_{1}}}{2-2^{p_{1}}}+\frac{\|x\|^{p_{2}}}{2-2^{p_{2}}}+\delta_{1}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right) \tag{2.3}\\
& (2.4)\left\|f(x, y)-f(x, 0)-F_{2}(x, y)\right\| \leq\left(\|x\|^{p_{3}}+\delta_{3}\right)\left(\frac{2^{q_{2}}}{2-2^{q_{2}}}\|y\|^{q_{2}}+\delta_{4}\right) \\
& \text { (2.5) } F_{1}(x, y)-F_{1}(x, 0)=F_{2}(x, y)
\end{align*}
$$

for all $x, y \in X$. The mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right), \quad F_{2}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(x, 2^{j} y\right)
$$

for all $x, y \in X$.
Proof. Letting $y=x$ and replacing z by y in (2.1),

$$
\|f(2 x, y)-2 f(x, y)\| \leq\left(\|x\|^{p_{1}}+\|x\|^{p_{2}}+\delta_{1}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right)
$$

for all $x, y \in X$. Thus

$$
\begin{aligned}
\| \frac{1}{2^{j}} f\left(2^{j} x, y\right) & -\frac{1}{2^{j+1}} f\left(2^{j+1} x, y\right) \| \\
& \leq\left(\frac{2^{p_{1}}}{2^{j+1}}\|x\|^{p_{1}}+\frac{2^{j p_{2}}}{2^{j+1}}\|x\|^{p_{2}}+\frac{\delta_{1}}{2^{j+1}}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right)
\end{aligned}
$$

for all $x, y \in X$. For given integers $l, m(0 \leq l<m)$,

$$
\begin{align*}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x, y\right)-\frac{1}{2^{m}} f\left(2^{m} x, y\right)\right\| \\
& \quad \leq \sum_{j=l}^{m-1}\left(\frac{2^{j p_{1}}}{2^{j+1}}\|x\|^{p_{1}}+\frac{2^{j p_{2}}}{2^{j+1}}\|x\|^{p_{2}}+\frac{\delta_{1}}{2^{j+1}}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right) \tag{2.6}
\end{align*}
$$

for all $x, y \in X$. By $p_{1}, p_{2}<1$, the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ converges for all $x, y \in X$. Define $F_{1}: X \times X \rightarrow Y$ by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (2.6), one can obtain the inequality (2.3). By (2.1) and (2.2),

$$
\begin{aligned}
\left\|\frac{1}{2^{j}} D_{1} f\left(2^{j} x, 2^{j} y, z\right)\right\| & \leq\left(\frac{2^{j p_{1}}}{2^{j}}\|x\|^{p_{1}}+\frac{2^{j p_{2}}}{2^{j}}\|y\|^{p_{2}}+\frac{\delta_{1}}{2^{j}}\right)\left(\|z\|^{q_{1}}+\delta_{2}\right), \\
\left\|\frac{1}{2^{j}} D_{2} f\left(2^{j} x, y, z\right)\right\| & \leq\left(\frac{2^{j p_{3}}}{2^{j}}\|x\|^{p_{3}}+\frac{\delta_{3}}{2^{j}}\right)\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}+\delta_{4}\right)
\end{aligned}
$$

for all $x, y, z \in X$ and all j. Letting $j \rightarrow \infty$ in the above two inequalities and using $p_{1}, p_{2}, p_{3}<1, F_{1}$ is a Cauchy-Jensen mapping. Now, let $F_{1}^{\prime}: X \times X \rightarrow Y$ be another Cauchy-Jensen mapping satisfying (2.3).

Then we have

$$
\begin{aligned}
\| F_{1}(x, y) & -F_{1}^{\prime}(x, y) \| \\
& \leq \frac{1}{2^{n}}\left\|f\left(2^{n} x, y\right)-F_{1}\left(2^{n} x, y\right)\right\|+\frac{1}{2^{n}}\left\|f\left(2^{n} x, y\right)-F_{1}^{\prime}\left(2^{n} x, y\right)\right\| \\
& \leq\left(\frac{2^{n p_{1}}}{2^{n}} \frac{\|x\|^{p_{1}}}{2-2^{p_{1}}}+\frac{2^{n p_{2}}}{2^{n}} \frac{\|x\|^{p_{2}}}{2-2^{p_{2}}}+\frac{\delta_{1}}{2^{n}}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right)
\end{aligned}
$$

for all $n \in N$ and $x, y \in X$. As $n \rightarrow \infty$, we may conclude that $F_{1}(x, y)=$ $F_{1}^{\prime}(x, y)$ for all $x, y \in X$. Thus such a Cauchy-Jensen mapping F_{1} : $X \times X \rightarrow Y$ is unique.

Next, replacing y by $2 y$ and z by 0 in (2.2), one can obtain

$$
\begin{align*}
\|(f(x, y)-f(x, 0)) & -\frac{1}{2}(f(x, 2 y)-f(x, 0)) \| \\
& \leq \frac{1}{2}\left(\|x\|^{p_{3}}+\delta_{3}\right)\left(2^{q_{2}}\|y\|^{q_{2}}+\|0\|^{q_{3}}+\delta_{4}\right) \tag{2.7}
\end{align*}
$$

for all $x, y \in X$. By the same method as above, F_{2} is a unique biadditive mapping which satisfies (2.4), where $F_{2}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(x, 2^{j} y\right)$ for all $x, y \in X$. From (2.7) and the definitions of F_{1} and F_{2}, the equalities

$$
\begin{align*}
F_{1}(x, y)-F_{1}(x, 0) & =\frac{1}{2}\left(F_{1}(x, 2 y)-F_{1}(x, 0)\right) \\
F_{1}(x, y)-F_{1}(x, 0) & =\frac{1}{2^{n}} F_{1}\left(x, 2^{n} y\right)-\frac{1}{2^{n}} F_{1}(x, 0) \\
F_{2}(x, y) & =\frac{1}{2^{n}} F_{2}\left(x, 2^{n} y\right) \tag{2.8}
\end{align*}
$$

hold for all $n \in N$ and for all $x, y \in X$. Hence, the inequality

$$
\begin{aligned}
\| F_{1}(x, y) & -F_{1}(x, 0)-F_{2}(x, y) \| \\
& =\left\|\frac{1}{2^{n}} F_{1}\left(x, 2^{n} y\right)-\frac{1}{2^{n}} F_{1}(x, 0)-\frac{1}{2^{n}} F_{2}\left(x, 2^{n} y\right)\right\| \\
& =\frac{1}{2^{n}}\left\|f\left(x, 2^{n} y\right)-F_{1}\left(x, 2^{n} y\right)\right\|+\frac{1}{2^{n}}\left\|f(x, 0)-F_{1}(x, 0)\right\| \\
& +\frac{1}{2^{n}}\left\|f\left(x, 2^{n} y\right)-f(x, 0)-F_{2}\left(x, 2^{n} y\right)\right\| \\
& \leq\left(\frac{\|x\|^{p_{1}}}{2-2^{p_{1}}}+\frac{\|x\|^{p_{2}}}{2-2^{p_{2}}}+\delta_{1}\right)\left(\frac{2^{n q_{1}}}{2^{n}}\|y\|^{q_{1}}+\frac{2 \delta_{2}}{2^{n}}\right) \\
& +\left(\|x\|^{p_{3}}+\delta_{3}\right)\left(\frac{2^{n q_{2}}}{2^{n}} \frac{2^{q_{2}}}{2-2^{q_{2}}}\|y\|^{q_{2}}+\frac{1}{2^{n}} \delta_{4}\right)
\end{aligned}
$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \rightarrow \infty$ and using $q_{1}, q_{2}<1$, we have (2.5).

Theorem 2.2. Let $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$ be fixed positive real numbers with $1<p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \left\|D_{1} f(x, y, z)\right\| \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}\right)\|z\|^{q_{1}}, \tag{2.9}\\
& \left\|D_{2} f(x, y, z)\right\| \leq\|x\|^{p_{3}}\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}\right) \tag{2.10}
\end{align*}
$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ such that

$$
\begin{align*}
& \left\|f(x, y)-F_{1}(x, y)\right\| \leq\left(\frac{\|x\|^{p_{1}}}{2^{p_{1}}-2}+\frac{\|x\|^{p_{2}}}{2^{p_{2}}-2}\right)\|y\|^{q_{1}}, \tag{2.11}\\
& \left\|f(x, y)-f(x, 0)-F_{2}(x, y)\right\| \leq\|x\|^{p_{3}} \frac{2^{q_{2}}}{2^{q_{2}}-2}\|y\|^{q_{2}}, \tag{2.12}\\
& F_{1}(x, y)-f(x, 0)=F_{2}(x, y) \tag{2.13}
\end{align*}
$$

for all $x, y \in X$. The mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} 2^{j} f\left(\frac{x}{2^{j}}, y\right), \quad F_{2}(x, y):=\lim _{j \rightarrow \infty} 2^{j}\left(f\left(x, \frac{y}{2^{j}}\right)-f(x, 0)\right)
$$

for all $x, y \in X$.
Proof. Replacing x, y, z by $\frac{x}{2}, \frac{x}{2}, y$ in (2.9) respectively, we have

$$
\left\|f(x, y)-2 f\left(\frac{x}{2}, y\right)\right\| \leq\left(\left\|\frac{x}{2}\right\|^{p_{1}}+\left\|\frac{x}{2}\right\|^{p_{2}}\right)\|y\|^{q_{1}}
$$

for all $x, y \in X$. Thus

$$
\left\|2^{j} f\left(\frac{x}{2^{j}}, y\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}, y\right)\right\| \leq\left(\left(\frac{2}{2^{p_{1}}}\right)^{j}\left\|\frac{x}{2}\right\|^{p_{1}}+\left(\frac{2}{2^{p_{2}}}\right)^{j}\left\|\frac{x}{2}\right\|^{p_{2}}\right)\|y\|^{q_{1}}
$$

for all $x, y \in X$. For given integers $l, m(0 \leq l<m)$,

$$
\begin{align*}
\| 2^{l} f\left(\frac{x}{2^{l}}, y\right) & -2^{m} f\left(\frac{x}{2^{m}}, y\right) \| \\
& \leq \sum_{j=l}^{m-1}\left(\left(\frac{2}{2^{p_{1}}}\right)^{j}\left\|\frac{x}{2}\right\|^{p_{1}}+\left(\frac{2}{2^{p_{2}}}\right)^{j}\left\|\frac{x}{2}\right\|^{p_{2}}\right)\|y\|^{q_{1}} \tag{2.14}
\end{align*}
$$

for all $x, y \in X$. By (2.14), the sequence $\left\{2^{j} f\left(\frac{x}{2^{j}}, y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{2^{j} f\left(\frac{x}{2^{j}}, y\right)\right\}$ converges for all $x, y \in X$. Define $F_{1}: X \times X \rightarrow Y$ by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} 2^{j} f\left(\frac{x}{2^{j}}, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (2.14), one can obtain the inequality (2.11). By (2.9) and (2.10),

$$
\begin{aligned}
& \left\|2^{j} D_{1} f\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, z\right)\right\| \leq\left(\left(\frac{2}{2^{p_{1}}}\right)^{j}\|x\|^{p_{1}}+\left(\frac{2}{2^{p_{2}}}\right)^{j}\|y\|^{p_{2}}\right)\|z\|^{q_{1}}, \\
& \left\|2^{j} D_{2} f\left(\frac{x}{2^{j}}, y, z\right)\right\| \leq\left(\frac{2}{2^{p_{3}}}\right)^{j}\|x\|^{p_{3}}\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}\right)
\end{aligned}
$$

for all $x, y, z \in X$ and all j. Letting $j \rightarrow \infty$ in the above two inequalities and using $1<p_{1}, p_{2}, p_{3}, F_{1}$ is a Cauchy-Jensen mapping. Now, let $F_{1}^{\prime}: X \times X \rightarrow Y$ be another Cauchy-Jensen mapping satisfying (2.11). Then we have

$$
\begin{aligned}
\| F_{1}(x, y) & -F_{1}^{\prime}(x, y) \| \\
& \leq 2^{n}\left\|f\left(\frac{x}{2^{n}}, y\right)-F_{1}\left(\frac{x}{2^{n}}, y\right)\right\|+2^{n}\left\|f\left(\frac{x}{2^{n}}, y\right)-F_{1}^{\prime}\left(\frac{x}{2^{n}}, y\right)\right\| \\
& \leq\left(\left(\frac{2}{2^{p_{1}}}\right)^{n} \frac{2\|x\|^{p_{1}}}{2^{p_{1}}-2}+\left(\frac{2}{2^{p_{2}}}\right)^{n} \frac{2\|x\|^{p_{2}}}{2^{p_{2}}-2}\right)\|y\|^{q_{1}}
\end{aligned}
$$

for all $n \in N$ and $x, y \in X$. As $n \rightarrow \infty$, we may conclude that $F_{1}(x, y)=$ $F_{1}^{\prime}(x, y)$ for all $x, y \in X$. Thus such a Cauchy-Jensen mapping F_{1} : $X \times X \rightarrow Y$ is unique.

Next, replacing z by 0 in (2.10), one can obtain

$$
\begin{equation*}
\left\|(f(x, y)-f(x, 0))-2\left(f\left(x, \frac{y}{2}\right)-f(x, 0)\right)\right\| \leq\|x\|^{p_{3}}\|y\|^{q_{2}} \tag{2.15}
\end{equation*}
$$

for all $x, y \in X$. By the same method as above, F_{2} is a unique biadditive mapping which satisfies (2.12), where $F_{2}(x, y):=\lim _{j \rightarrow \infty} 2^{j}\left(f\left(x, \frac{y}{2^{j}}\right)-\right.$ $f(x, 0))$ for all $x, y \in X$. From (2.15) and the definitions of F_{1} and F_{2}, the equalities

$$
\begin{align*}
F_{1}(x, y)-F_{1}(x, 0) & =2\left(F_{1}\left(x, \frac{y}{2}\right)-F_{1}(x, 0)\right), \\
F_{1}(x, y)-F_{1}(x, 0) & =2^{n} F_{1}\left(x, \frac{y}{2^{n}}\right)-2^{n} F_{1}(x, 0), \\
F_{2}(x, y) & =2^{n} F_{2}\left(x, \frac{y}{2^{n}}\right) \tag{2.16}
\end{align*}
$$

hold for all $n \in N$ and for all $x, y \in X$. By (2.11), the equality $f(x, 0)=$ $F_{1}(x, 0)$ holds for all $x \in X$. Hence, by (2.11), (2.12) and the above
equalities, the inequalty

$$
\begin{aligned}
\| F_{1}(x, y) & -F_{1}(x, 0)-F_{2}(x, y) \| \\
& =\left\|2^{n} F_{1}\left(x, \frac{y}{2^{n}}\right)-2^{n} F_{1}(x, 0)-2^{n} F_{2}\left(x, \frac{y}{2^{n}}\right)\right\| \\
& =2^{n}\left\|f\left(x, \frac{y}{2^{n}}\right)-F_{1}\left(x, \frac{y}{2^{n}}\right)\right\|+2^{n}\left\|f(x, 0)-F_{1}(x, 0)\right\| \\
& +2^{n}\left\|f\left(x, \frac{y}{2^{n}}\right)-f(x, 0)-F_{2}\left(x, \frac{y}{2^{n}}\right)\right\| \\
& \leq\left(\frac{2}{2^{q_{1}}}\right)^{n}\left(\frac{\|x\|^{p_{1}}}{2^{p_{1}}-2}+\frac{\|x\|^{p_{2}}}{2^{p_{2}}-2}\right)\|y\|^{q_{1}}+\|x\|^{p_{3}} \frac{2^{q_{2}}}{2^{q_{2}}-2}\left(\frac{2}{2^{q_{2}}}\right)^{n}\|y\|^{q_{2}}
\end{aligned}
$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \rightarrow \infty$ and using $1<q_{1}, q_{2}$, we have (2.13).

Theorem 2.3. $\operatorname{Let} p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, \delta_{1}, \delta_{3}$ be fixed positive real numbers with $p_{1}, p_{2}, p_{3}<1$ and $1<q_{1}, q_{2}, q_{3}$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{aligned}
& \left\|D_{1} f(x, y, z)\right\| \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\delta_{1}\right)\|z\|^{q_{1}} \\
& \left\|D_{2} f(x, y, z)\right\| \leq\left(\|x\|^{p_{3}}+\delta_{3}\right)\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ satisfying
(2.19) $\quad F_{1}(x, y)-f(x, 0)=F_{2}(x, y)$
for all $x, y \in X$. The mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by

$$
\begin{equation*}
F_{1}(x, y)=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right), \quad F_{2}(x, y)=\lim _{j \rightarrow \infty} 2^{j}\left(f\left(x, \frac{y}{2^{j}}\right)-f(x, 0)\right) \tag{2.20}
\end{equation*}
$$

for all $x, y \in X$.
Proof. By the similar method in the proof of Theorem 2.1 and Theorem 2.2, one obtains that there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ satisfying (2.17) and (2.18), the mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by (2.20), $f(x, 0)=F_{1}(x, 0)$ and the equalities in (2.16) hold for all $n \in N$
and for all $x, y \in X$. Hence, the inequality

$$
\begin{aligned}
\| F_{1}(x, y) & -F_{1}(x, 0)-F_{2}(x, y) \| \\
& =\left\|2^{n} F_{1}\left(x, \frac{y}{2^{n}}\right)-2^{n} F_{1}(x, 0)-2^{n} F_{2}\left(x, \frac{y}{2^{n}}\right)\right\| \\
& =2^{n}\left\|f\left(x, \frac{y}{2^{n}}\right)-F_{1}\left(x, \frac{y}{2^{n}}\right)\right\|+2^{n}\left\|f(x, 0)-F_{1}(x, 0)\right\| \\
& +2^{n}\left\|f\left(x, \frac{y}{2^{n}}\right)-f(x, 0)-F_{2}\left(x, \frac{y}{2^{n}}\right)\right\| \\
& \leq\left(\frac{2}{2^{q_{1}}}\right)^{n}\left(\frac{\|x\|^{p_{1}}}{2-2^{p_{1}}}+\frac{\|x\|^{p_{2}}}{2-2^{p_{2}}}+\delta_{1}\right)\|y\|^{q_{1}} \\
& +\left(\|x\|^{p_{3}}+\delta_{3}\right) \frac{2^{q_{2}}}{2^{q_{2}}-2}\left(\frac{2}{2^{q_{2}}}\right)^{n}\|y\|^{q_{2}}
\end{aligned}
$$

holds for all $n \in N$ and for all $x, y \in X$. Taking $n \rightarrow \infty$ and using $1<q_{1}, q_{2}$, we have (2.19).

Theorem 2.4. Let $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, \delta_{2}, \delta_{4}$ be fixed positive real numbers with $1<p_{1}, p_{2}, p_{3}$ and $q_{1}, q_{2}, q_{3}<1$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{aligned}
& \left\|D_{1} f(x, y, z)\right\| \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}\right)\left(\|z\|^{q_{1}}+\delta_{2}\right), \\
& \left\|D_{2} f(x, y, z)\right\| \leq\|x\|^{p_{3}}\left(\|y\|^{q_{2}}+\|z\|^{q_{3}}+\delta_{4}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ such that Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \left\|f(x, y)-F_{1}(x, y)\right\| \leq\left(\frac{\|x\|^{p_{1}}}{2^{p_{1}}-2}+\frac{\|x\|^{p_{2}}}{2^{p_{2}}-2}\right)\left(\|y\|^{q_{1}}+\delta_{2}\right), \tag{2.21}\\
& \left\|f(x, y)-f(x, 0)-F_{2}(x, y)\right\| \leq\|x\|^{p_{3}}\left(\frac{2^{q_{2}}}{2-2^{q_{2}}}\|y\|^{q_{2}}+\delta_{4}\right), \\
& F_{1}(x, y)-F_{1}(x, 0)=F_{2}(x, y)
\end{align*}
$$

for all $x, y \in X$. The mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by

$$
\begin{equation*}
F_{1}(x, y)=\lim _{j \rightarrow \infty} 2^{j} f\left(\frac{x}{2^{j}}, y\right), \quad F_{2}(x, y)=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(x, 2^{j} y\right) \tag{2.24}
\end{equation*}
$$

for all $x, y \in X$.
Proof. By the similar method in the proof of Theorem 2.1 and Theorem 2.2, one obtains that there exist a unique Cauchy-Jensen mapping $F_{1}: X \times X \rightarrow Y$ and a unique biadditive mapping $F_{2}: X \times X \rightarrow Y$ satisfying (2.21) and (2.22), the mappings $F_{1}, F_{2}: X \times X \rightarrow Y$ are given by
(2.24) and the equalities in (2.8) hold for all $n \in N$ and for all $x, y \in X$. Hence, the inequality

$$
\begin{aligned}
\mid F_{1}(x, y) & -F_{1}(x, 0)-F_{2}(x, y) \| \\
& =\left\|\frac{1}{2^{n}} F_{1}\left(x, 2^{n} y\right)-\frac{1}{2^{n}} F_{1}(x, 0)-\frac{1}{2^{n}} F_{2}\left(x, 2^{n} y\right)\right\| \\
& =\left\|\frac{1}{2^{n}} f\left(x, 2^{n} y\right)-\frac{1}{2^{n}} F_{1}\left(x, 2^{n} y\right)\right\|+\frac{1}{2^{n}}\left\|F_{1}(x, 0)-f(x, 0)\right\| \\
& +\frac{1}{2^{n}}\left\|f\left(x, 2^{n} y\right)-f\left(x, 2^{n} 0\right)-F_{2}\left(x, 2^{n} y\right)\right\| \\
& \leq\left(\frac{\|x\|^{p_{1}}}{2^{p_{1}}-2}+\frac{\|x\|^{p_{2}}}{2^{p_{2}}-2}\right)\left(\left(\frac{2^{q_{1}}}{2}\right)^{n}\|y\|^{q_{1}}+\frac{2}{2^{n}} \delta_{2}\right) \\
& +\|x\|^{p_{3}}\left(\left(\frac{2^{q_{1}}}{2}\right)^{n} \frac{2^{q_{2}}}{2-2^{q_{2}}}\|y\|^{q_{2}}+\frac{1}{2^{n}} \delta_{4}\right) .
\end{aligned}
$$

Taking $n \rightarrow \infty$ and using $q_{1}, q_{2}<1$, we have (2.23).
Corollary 2.5. Let $0<p_{1}, p_{2}<1$ and $0<q_{1}, q_{2}<1$ or $1<q_{1}, q_{2}$. Let $f: X \times X \rightarrow Y$ be a mapping such that
(2.25) $\quad\|D f(x, y, z, w)\| \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\delta_{1}\right)\left(\|z\|^{q_{1}}+\|w\|^{q_{2}}+\delta_{2}\right)$
for all $x, y, z, w \in X$, where $\delta_{2}=0$ for $q_{1}, q_{2}>1$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq\left(\frac{\|x\|^{p_{1}}}{2-2^{p_{1}}}+\frac{\|x\|^{p_{2}}}{2-2^{p_{2}}}+\delta_{1}\right) \frac{1}{2}\left(\|y\|^{q_{1}}+\|y\|^{q_{2}}+\delta_{2}\right)
$$

for all $x, y \in X$ where $\delta_{2}=0$ for $q_{1}, q_{2}>1$. The mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y)=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X$.
Proof. From (2.25), we know that

$$
\begin{aligned}
D_{1} f(x, y, z) \| & =\left\|\frac{1}{2} D f(x, y, z, z)\right\| \\
& \leq \frac{1}{2}\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\delta_{1}\right)\left(\|z\|^{q_{1}}+\|z\|^{q_{2}}+\delta_{2}\right) \\
\left\|D_{2} f(x, y, z)\right\| & =\left\|D f\left(\frac{x}{2}, \frac{x}{2}, y, z\right)-\frac{1}{2} D f\left(\frac{x}{2}, \frac{x}{2}, y, y\right)-\frac{1}{2} D f\left(\frac{x}{2}, \frac{x}{2}, z, z\right)\right\| \\
& \leq\left(\left\|\frac{x}{2}\right\|^{p_{1}}+\left\|\frac{x}{2}\right\|^{p_{2}}+\delta_{1}\right)\left(\frac{3}{2}\|y\|^{q_{1}}\right. \\
& \left.+\frac{3}{2}\|z\|^{q_{2}}+2 \delta_{2}+\frac{1}{2}\|y\|^{q_{2}}+\frac{1}{2}\|z\|^{q_{1}}\right)
\end{aligned}
$$

for all $x, y \in X$. Then we can apply the similar method in the proof of Theorem 2.1 for the case $0<q_{1}, q_{2}<1$ and apply the similar method in the proof of Theorem 2.3 for the case $1<q_{1}, q_{2}$, and therefore, we get the results in this corollary.

Corollary 2.6. Let $1<p_{1}, p_{2}$ and $0<q_{1}, q_{2}<1$ or $1<q_{1}, q_{2}$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\|D f(x, y, z, w)\| \leq\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}\right)\left(\|z\|^{q_{1}}+\|w\|^{q_{2}}+\delta_{2}\right)
$$

for all $x, y, z, w \in X$, where $\delta_{2}=0$ for $q_{1}, q_{2}>1$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq\left(\frac{\|x\|^{p_{1}}}{2^{p_{1}}-2}+\frac{\|x\|^{p_{2}}}{2^{p_{2}}-2}\right) \frac{1}{2}\left(\|y\|^{q_{1}}+\|y\|^{q_{2}}+\delta_{2}\right)
$$

for all $x, y \in X$ where $\delta_{2}=0$ for $q_{1}, q_{2}>1$. The mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y)=\lim _{j \rightarrow \infty} 2^{j} f\left(\frac{x}{2^{j}}, y\right)
$$

for all $x, y \in X$.
Proof. We can use the same method in the proof of Corollary 2.5 and we get the results in this corollary by applying Theorem 2.2 and Theorem 2.4.

References

[1] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[2] D. H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224.
[3] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-643.
[4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[5] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

*

Department of Mathematics Education
Gongju National University of Education
Gongju 314-060, Republic of Korea
E-mail: lyhmzi@pro.gjue.ac.kr

[^0]: Received May 2, 2007.
 2000 Mathematics Subject Classification: Primary 39B52.
 Key words and phrases: stability, Cauchy-Jensen mapping, functional equation.
 This work was supported by Gongju National University of Education Grant.

