A FUNCTIONAL EQUATION ON HYPERPLANES PASSING THROUGH THE ORIGIN

JAE-HYEONG BAE* AND WON-GIL PARK**

ABSTRACT. In this paper, we obtain the general solution and the stability of the multi-dimensional Cauchy's functional equation

$$f(x_1 + y_1, \dots, x_n + y_n) = f(x_1, \dots, x_n) + f(y_1, \dots, y_n).$$

The function f given by $f(x_1, \dots, x_n) = a_1x_1 + \dots + a_nx_n$ is a solution of the above functional equation.

1. Introduction

Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be real numbers not all equal to 0. Then the set consisting of all vectors (x_1, \dots, x_n) in \mathbb{R}^n such that

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = c$$

for c a constant is a subspace of \mathbb{R}^n called a hyperplane. Thus, for example, lines are hyperplanes in \mathbb{R}^2 and planes are hyperplanes in \mathbb{R}^3 . If c = 0 in (1.1), then the equation simplifies to

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

and we say that the hyperplane **passes through the origin** or the **linear** hyperplane.

More generally, a linear hyperplane is any codimension-1 vector subspace of a vector space. Equivalently, a linear hyperplane V in a vector space W is any subspace such that W/V is one-dimensional. Equivalently, a linear hyperplane is the linear transformation kernel of any nonzero linear map from the vector space to the underlying field.

In this paper, let X and Y be real vector spaces. For a mapping $f: X^n \to Y$, consider the multi-dimensional Cauchy's functional equation:

$$(1.2) f(x_1 + y_1, \dots, x_n + y_n) = f(x_1, \dots, x_n) + f(y_1, \dots, y_n)$$

Received February 17, 2007.

2000 Mathematics Subject Classification: Primary 39B52, 39B72.

Key words and phrases: solution, stability, multi-dimensional Cauchy's functional equation.

When $X = Y = \mathbb{R}$, the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1, \cdots, x_n) = a_1 x_1 + \cdots + a_n x_n$$

is a solution of (1.2).

For a mapping $g: X \to Y$, consider the Cauchy's functional equation:

(1.3)
$$g(x+y) = g(x) + g(y).$$

Recently, the authors investigated various functional equations ([2], [3], [4]). In this paper, we investigate the relation between (1.2) and (1.3). And we find out the general solution and prove the generalized Hyers-Ulam stability of (1.2).

2. Results

The multi-dimensional vector-variable Cauchy's functional equation (1.2) induces the Cauchy's functional equation (1.3) as follows.

THEOREM 2.1. Let $f: X^n \to Y$ be a mapping satisfying (1.2) and let $g: X \to Y$ be the mapping given by

$$(2.1) g(x) := f(x, \dots, x)$$

for all $x \in X$, then g satisfies (1.3).

Proof. By (1.2) and (2.1),

$$g(x+y) = 2f(x+y,\dots,x+y)$$

$$= f(x,\dots,x) + f(y,\dots,y)$$

$$= g(x) + g(y)$$

for all $x, y \in X$. \square

The Cauchy's functional equation (1.3) induces the multi-dimensional Cauchy's functional equation (1.2) with an additional condition.

THEOREM 2.2. Let $a_1, \dots, a_n \in \mathbb{R}$ and $g: X \to Y$ be a mapping satisfying (1.3). If $f: X^n \to Y$ is the mapping given by

(2.2)
$$f(x_1, \dots, x_n) := a_1 g(x_1) + \dots + a_n g(x_n)$$

for all $x_1, \dots, x_n \in X$, then f satisfies (1.2). Furthermore, (2.1) holds if

$$a_1 + \cdots + a_n = 1.$$

Proof. By (1.3) and (2.2),

$$f(x_1 + y_1, \dots, x_n + y_n)$$

$$= a_1 g(x_1 + y_1) + \dots + a_n g(x_n + y_n)$$

$$= a_1 [g(x_1) + g(y_1)] + \dots + a_n [g(x_n) + g(y_n)]$$

$$= [a_1 g(x_1) + \dots + a_n g(x_n)] + [a_1 g(y_1) + \dots + a_n g(y_n)]$$

$$= f(x_1, \dots, x_n) + f(y_1, \dots, y_n)$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in X$. Furthermore, if $a_1 + \dots + a_n = 1$,

$$f(x, \dots, x) = a_1 g(x) + \dots + a_n g(x) = g(x)$$

for all $x \in X$. \square

EXAMPLE 2.1. Let X be the space of $m \times m$ real matrices. Consider the mapping $g: X \to \mathbb{R}$ given by g(A) := tr(A) =the trace of A for all $A \in X$. For $a_1, \dots, a_n \in \mathbb{R}$, consider the function $f: X^n \to \mathbb{R}$ given by

$$f(A_1, \cdots, A_n) = \sum_{i=1}^{n} a_i \ tr(A_i)$$

for all $A_1, \dots, A_n \in X$. By Theorem 2.2, the function f satisfies (1.2).

In the following theorem, we find out the general solution of the multi-dimensional Cauchy's functional equation (1.2).

THEOREM 2.3. A mapping $f: X^n \to Y$ satisfies (1.2) if and only if there exist additive mappings $A_1, \dots, A_n: X \to Y$ such that

$$f(x_1, \dots, x_n) = A_1(x_1) + \dots + A_n(x_n)$$

for all $x_1, \dots, x_n \in X$.

Proof. We first assume that f is a solution of (1.2). Define $A_1, \dots, A_n : X \to Y$ by

$$A_1(x) := f(x, 0, \dots, 0), \dots, A_n(x) := f(0, \dots, 0, x)$$

for all $x_1, \dots, x_n \in X$. One can easily verify that A_1, \dots, A_n are additive mappings.

Letting
$$y_2 = -x_2, \dots, y_n = -x_n$$
 and $y_1 = x_1$ in (1.2),

$$2f(x_1,0,\cdots,0) = f(x_1,\cdots,x_n) + f(x_1,-x_2,\cdots,-x_n)$$

for all $x_1, \dots, x_n \in X$. Putting $y_2 = x_2, \dots, y_n = x_n$ and $y_1 = -x_1$ in (1.2),

$$f(0,2x_2,\cdots,2x_n) = f(x_1,\cdots,x_n) + f(-x_1,x_2,\cdots,x_n)$$

for all $x_1, \dots, x_n \in X$. Setting $y_1 = -x_1, \dots, y_n = -x_n$ in (1.2),

$$f(-x_1,\cdots,-x_n)=-f(x_1,\cdots,x_n)$$

for all $x_1, \dots, x_n \in X$. By the above three equalities,

(2.3)
$$f(x_1, \dots, x_n) = f(x_1, 0, \dots, 0) + \frac{1}{2}f(0, 2x_2, \dots, 2x_n)$$

for all $x_1, \dots, x_n \in X$. Letting $y_2 = x_2, y_3 = -x_3, \dots, y_n = -x_n$ and $x_1 = y_1 = 0$ in (1.2),

$$2f(0,x_2,0,\cdots,0) = f(0,x_2,x_3,\cdots,x_n) + f(0,x_2,-x_3,\cdots,-x_n)$$

for all $x_2, \dots, x_n \in X$. Putting $y_2 = -x_2, y_3 = x_3, \dots, y_n = x_n$ and $x_1 = y_1 = 0$ in (1.2),

$$f(0,0,2x_3,\cdots,2x_n) = f(0,x_2,x_3,\cdots,x_n) + f(0,-x_2,x_3,\cdots,x_n)$$

for all $x_2, \dots, x_n \in X$. By the above two equalities,

$$(2.4) f(0, x_2, \dots, x_n) = f(0, x_2, 0, \dots, 0) + \frac{1}{2}f(0, 0, 2x_3, \dots, 2x_n)$$

for all $x_2, \dots, x_n \in X$. By (2.3) and (2.4),

$$f(x_1, \dots, x_n) = f(x_1, 0, \dots, 0) + f(0, x_2, 0, \dots, 0) + \frac{1}{2^2} f(0, 0, 2^2 x_3, \dots, 2^2 x_n),$$

for all $x_1, \dots, x_n \in X$. Continuing this process, one can obtain that

$$f(x_1, \dots, x_n) = f(x_1, 0, \dots, 0) + \dots + \frac{1}{2^{n-1}} f(0, \dots, 0, 2^{n-1} x_n)$$

$$= f(x_1, 0, \dots, 0) + \dots + f(0, \dots, 0, x_n)$$

$$= A_1(x_1) + \dots + A_n(x_n)$$

for all $x_1, \dots, x_n \in X$.

Conversely, we assume that there exist additive mappings $A_1, \dots, A_n: X^n \to Y$ such that

$$f(x_1, \dots, x_n) = A_1(x_1) + \dots + A_n(x_n)$$

for all $x_1, \dots, x_n \in X$. Since A_1, \dots, A_n are additive,

$$f(x_1 + y_1, \dots, x_n + y_n)$$

$$= 2A_1(x_1 + y_1) + \dots + 2A_n(x_n + y_n)$$

$$= A_1(x_1) + A_1(y_1) + \dots + A_n(x_n) + A_n(y_n)$$

$$= f(x_1, \dots, x_n) + f(y_1, \dots, y_n)$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in X$. \square

Let Y be complete and let $\varphi: X^{2n} \to [0,\infty)$ be a function satisfying

(2.5)
$$\tilde{\varphi}(x_1, \dots, x_n, y_1, \dots, y_n) := \sum_{j=0}^{\infty} \frac{1}{2^{j+1}} \varphi(2^j x_1, \dots, 2^j x_n, -2^j x_1, \dots, -2^j x_n) < \infty$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in X$.

THEOREM 2.4. Let $f: X^n \to Y$ be a mapping such that

(2.6)
$$||f(x_1 + y_2, \dots, x_n + y_n) - f(x_1, \dots, x_n) - f(y_1, \dots, y_n)||$$

$$\leq \varphi(x_1, \dots, x_n, y_1, \dots, y_n)$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in X$. Then there exists a unique multidimensional Cauchy's mapping $F: X^n \to Y$ such that

$$(2.7)||f(x_1,\dots,x_n) - F(x_1,\dots,x_n)|| \\ \leq \tilde{\varphi}(x_1,\dots,x_n,x_1,\dots,x_n) + \tilde{\varphi}(-x_1,\dots,-x_n,-2x_1,\dots,-2x_n)$$
 for all $x_1,\dots,x_n \in X$.

Proof. Letting
$$y_1 = -x_1, \dots, y_n = -x_n$$
 in (2.6), we have

$$||f(x_1,\dots,x_n)+f(-x_1,\dots,-x_n)|| \le \varphi(x_1,\dots,x_n,-x_1,\dots,-x_n)$$

for all $x_1, \dots, x_n \in X$. Replacing $x_1, \dots, x_n, y_1, \dots, y_n$ by $-x_1, \dots, -x_n, 2x_1, \dots, 2x_n$ respectively in (2.6), we have

$$||f(x_1,\dots,x_n) - f(-x_1,\dots,-x_n) - f(2x_1,\dots,2x_n)||$$

$$\leq \varphi(-x_1,\dots,-x_n,2x_1,\dots,2x_n)$$

for all $x_1, \dots, x_n \in X$. By the above two inequalities,

$$||f(x_1,\dots,x_n) - \frac{1}{2}f(2x_1,\dots,2x_n)||$$

$$\leq \frac{1}{2} [\varphi(x_1,\dots,x_n,-x_1,\dots,-x_n) + \varphi(-x_1,\dots,-x_n,2x_1,\dots,2x_n)]$$

for all $x_1, \dots, x_n \in X$. Thus we obtain

$$\left\| \frac{1}{2^{j}} f(2^{j} x_{1}, \dots, 2^{j} x_{n}) - \frac{1}{2^{j+1}} f(2^{j+1} x_{1}, \dots, 2^{j+1} x_{n}) \right\|$$

$$\leq \frac{1}{2^{j+1}} \left[\varphi(2^{j} x_{1}, \dots, 2^{j} x_{n}, -2^{j} x_{1}, \dots, -2^{j} x_{n}) + \varphi(-2^{j} x_{1}, \dots, -2^{j} x_{n}, 2^{j+1} x_{1}, \dots, 2^{j+1} x_{n}) \right]$$

for all $x_1, \dots, x_n \in X$ and all j. For given integers $l, m(0 \le l < m)$, we get

$$\left\| \frac{1}{2^{l}} f(2^{l} x_{1}, \cdots, 2^{l} x_{n}) - \frac{1}{2^{m}} f(2^{m} x_{1}, \cdots, 2^{m} x_{n}) \right\|$$

$$(2.8) \qquad \leq \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} [\varphi(2^{j} x_{1}, \cdots, 2^{j} x_{n}, -2^{j} x_{1}, \cdots, -2^{j} x_{n}) + \varphi(-2^{j} x_{1}, \cdots, -2^{j} x_{n}, 2^{j+1} x_{1}, \cdots, 2^{j+1} x_{n})]$$

for all $x_1, \dots, x_n \in X$. By (2.8), the sequence $\{\frac{1}{2^j}f(2^jx_1, \dots, 2^jx_n)\}$ is a Cauchy sequence for all $x_1, \dots, x_n \in X$. Since Y is complete, the sequence $\{\frac{1}{2^j}f(2^jx_1, \dots, 2^jx_n)\}$ converges for all $x_1, \dots, x_n \in X$. Define $F: X^n \to Y$ by

$$F(x_1, \dots, x_n) := \lim_{j \to \infty} \frac{1}{2^j} f(2^j x_1, \dots, 2^j x_n)$$

for all $x_1, \dots, x_n \in X$. By (2.6), we have

$$||f(2^{j}(x_1+y_1),\cdots,2^{j}(x_n+y_n))-f(2^{j}x_1,\cdots,2^{j}x_n)| - f(2^{j}y_1,\cdots,2^{j}y_n)|| < \varphi(2^{j}x_1,\cdots,2^{j}y_n,2^{j}y_1,\cdots,2^{j}y_n)||$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in X$ and all j. Letting $j \to \infty$ and using (2.5), we see that F satisfies (1.2). Setting l = 0 and taking $m \to \infty$ in (2.8), one can obtain the inequality (2.7). If $G: X^n \to Y$ is another

multi-dimensional additive mapping satisfying (2.7), we obtain

$$||F(x_1, \dots, x_n) - G(x_1, \dots, x_n)||$$

$$= \frac{1}{2^n} ||F(2^n x_1, \dots, 2^n x_n) - G(2^n x_1, \dots, 2^n x_n)||$$

$$\leq \frac{1}{2^n} ||F(2^n x_1, \dots, 2^n x_n) - f(2^n x_1, \dots, 2^n x_n)||$$

$$+ \frac{1}{2^n} ||f(2^n x_1, \dots, 2^n x_n) - G(2^n x_1, \dots, 2^n x_n)||$$

$$\leq \frac{2}{2^n} [\tilde{\varphi}(2^n x_1, \dots, 2^n x_n, 2^n x_1, \dots, 2^n x_n)$$

$$+ \tilde{\varphi}(-2^n x_1, \dots, -2^n x_n, -2^{n+1} x_1, \dots, -2^{n+1} x_n)]$$

$$\to 0 \text{ as } n \to \infty$$

for all $x_1, \dots, x_n \in X$. Hence the mapping F is the unique multi-dimensional additive mapping, as desired. \square

References

- J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, Cambridge, 1989.
- [2] J.-H. Bae and W.-G. Park, On stability of a functional equation with n variables, Nonlinear Anal. **64** (2006), 856–868.
- [3] J.-H. Bae and W.-G. Park, A functional equation originating from quadratic forms, J. Math. Anal. Appl. **326** (2007), 1142–1148.
- [4] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634–643.

*

Department of Mathematics and Applied Mathematics Kyung Hee University Yongin 449-701, Republic of Korea E-mail: jhbae@khu.ac.kr

**

National Institute for Mathematical Sciences 385-16 Doryong-dong, Yuseong-gu Daejeon 305-340, Republic of Korea *E-mail*: wgpark@nims.re.kr