
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 20, No. 3, September 2007

ASYMPTOTIC EQUIVALENCE OF VOLTERRA
DIFFERENCE SYSTEMS

Sung Kyu Choi *, Jin Soon Kim **, and Namjip Koo ***

Abstract. We obtain a discrete analogue of Nohel’s result in [5]
about asymptotic equivalence between perturbed Volterra system
and unperturbed system.

1. Introduction

Let Z+ = {0, 1, 2, · · · } and Rd be the d-dimensional real Euclidean
space with norm

|x| =
d∑

i=1

|xi|, x = (x1, · · · xd) ∈ Rd.

For a d× d matrix A = [aij ] on Z+ × Z+ , the norm of A is given by

|A| =
d∑

i=1

d∑

j=1

|aij |.

Let BC be the space of all bounded sequences equipped with the norm

|φ| = sup
n≥0

|φ(n)| , φ ∈ BC.

We consider the perturbed system of Volterra difference equations

(1.1) x(n) = f(n) +
n∑

s=0

B(n, s)[x(s) + g(s, x(s))], n ≥ 0
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and unperturbed system

(1.2) y(n) = f(n) +
n∑

s=0

B(n, s)y(s).

Two systems (1.1) and (1.2) are asymptotically equivalent if for every
bounded solution x(n) of (1.1), there exists a bounded solution y(n) of
(1.2) such that

(1.3) lim
n→∞[x(n)− y(n)] = 0

and conversely, for each bounded solution v(n) of (1.2) there exists a
bounded solution u(n) of (1.1) such that

lim
n→∞[u(n)− v(n)] = 0.

The purpose of this paper is to obtain the asymptotic equivalence
between (1.1) and (1.2) as a discrete analogue of Nohel’s result in [5].

For the asymptotic equivalence between perturbed Volterra difference
system

x(n + 1) = A(n)x(n) +
n∑

s=0

B(n, s)x(s) + f(n), n ≥ 0

and linear Volterra difference system

y(n + 1) = A(n)y(n) +
n∑

s=0

B(n, s)y(s), n ≥ 0,

see [1] and [2].

2. Main Results

Consider the perturbed system of Volterra difference equations

(2.1) x(n) = f(n) +
n∑

s=0

B(n, s)[x(s) + g(s, x(s))], n ≥ 0

and unperturbed system

(2.2) y(n) = f(n) +
n∑

s=0

B(n, s)y(s),

where x, y, f : Z+ → Rd , B is a d× d matrix on Z+×Z+, and g(n, x)
is defined for n ≥ 0, |x| < ∞ and is continuous in x, g(n, 0) = 0 with

(2.3) g(n, x) = o(|x|) uniformly in n, as |x| → 0.
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Note that the solution y(n) can be represented by

(2.4) y(n) = f(n)−
n∑

k=0

R(n, k)f(k),

where the resolvent matrix R(n,m) satisfies

(2.5) R(n,m) =
n∑

j=m

B(n, j)B(j, m)−B(n,m), 0 ≤ m ≤ n.

See[4].
Firstly, we show that the following representation is a solution of

(2.1).

Theorem 2.1. The solution x(n) of (2.1) is given by the form

(2.6) x(n) = f(n)−
n∑

k=0

R(n, k)[f(k) + g(k, x(k))].

Proof. We have

x(n) =
n∑

k=0

B(n, k)g(k, x(k)) + f(n)−
n∑

k=0

R(n, k)f(k)

=
n∑

k=0

B(n, k)g(k, x(k)) + f(n)

−
n∑

k=0

R(n, k)[
k∑

l=0

B(k, l)g(l, x(l)) + f(k)].

Thus

x(n)− f(n) +
n∑

k=0

R(n, k)f(k)−
n∑

l=0

B(n, l)g(l, x(l))

= −
n∑

k=0

R(n, k)
k∑

l=0

B(k, l)g(l, x(l))

= −
n∑

k=0

k∑

l=0

R(n, k)B(k, l)g(l, x(l)).
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Hence we obtain

x(n) = f(n)−
n∑

k=0

R(n, k)f(k)−
n∑

k=0

[R(n, k)B(k, l)−B(n, l)]g(l, x(l))

= f(n)−
n∑

k=0

R(n, k)[f(n) + g(k, x(k))].

by(2.5).

We need the following fixed point theorem.

Schauder - Tychonoff Theorem [3] Let C(J) denote the set of all
functions which are continuous on the interval J , and let F be the subset
formed by those functions x(t) such that

|x(t)| ≤ µ(t) for all t ∈ J,

where µ(t) is a fixed positive continuous function.
Let T be a mapping of F into itself with the properties
(i) T is continuous, in the sense that if xn ∈ F, n = 1, 2, · · · , and

xn → x uniformly on every compact subinterval of J , then Txn → Tx
uniformly on every compact subinterval of J ,

(ii) The image set T (F ) is equicontinuous and bounded at every point
of J .

Then T has at least one fixed point in F .

Theorem 2.2. Let y(n) be a bounded solution of (2.2). Suppose
that

(i)
∑n

s=0 |R(n, s)| ≤ c, for some c > 0,
(ii) for any n0 > 0,

lim
n→∞[

n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)|] = 0, n > n0 > 0,

(iii) for any λ with 0 < λ < 1 and ε > 0, |y| ≤ λε for some ε0 > 0
with 0 < ε ≤ ε0.

Then there exists at least one solution x(n) of (2.1) such that x ∈ BC
and |x| ≤ ε.

Proof. In view of the assumption (2.3), there exists an ε0 > 0 such
that |x| ≤ ε0 implies |g(n, x)| ≤ β|x| uniformly in n for some β > 0 with
βc < 1− λ. Let 0 < ε ≤ ε0. Consider the set

Sε = {φ ∈ BC : |φ| ≤ ε}.
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Define the operator T : Sε → BC by the relation

Tφ(n) = y(n) +
n∑

s=0

R(n, s)g(s, φ(s)), n ≥ 0.

We claim that T (Sε) ⊂ Sε. Using (i) and (iii), we have

|Tφ(n)| ≤ |y(n)|+
n∑

s=0

|R(n, s)||g(s, φ(s))|

≤ |y|+ cβ sup
n≥0

|φ(n)|

≤ |y|+ cβε

≤ λε + (1− λ)ε = ε.

For the proof of continuity of T , we let φm ∈ Sε and suppose φm → φ
uniformly on every compact subset of Z+. Then

|Tφ(n)− Tφm(n)| ≤
n∑

s=0

|R(n, s)||g(s, φ(s))− g(s, φm(s))|

≤ c sup
0≤s≤n

|g(s, φ(s))− g(s, φm(s))|

which tends to zero as n →∞, uniformly on compact subset of Z+ since
g(n, x) is continuous in x.

Now we show that T (Sε) is equicontinuous. To do this we let no ∈ Z+

and n > n0 (the same argument applies to n < n0). Let ε > 0 be given.
We show that there exists a δ > 0 such that |n − n0| ≤ δ implies
|Tφ(n)− Tφ(n0)| < ε. From the assumptions we have

|Tφ(n) − Tφ(n0)|

≤ |y(n)− y(n0)|+ |
n∑

s=0

R(n, s)−
n0∑

s=0

R(n0, s)||g(s, φ(s))|

= |y(n)− y(n0)|+ [
n0∑

s=0

|R(n, s)−R(n0, s)|

+
n∑

s=n0+1

|R(n, s)|]|g(s, φ(s))|
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≤ |y(n)− y(n0)|+ sup
0≤s≤n

|g(s, φ(s))|[
n0∑

s=0

|R(n, s)−R(n0, s)|

+
n∑

s=n0+1

|R(n, s)|].

Let η > 0 be given. Choose a δ1 > 0 such that

|y(n)− y(n0)| ≤ η/2 when |n− n0| ≤ δ1.

By (ii), choose a δ2 > 0 such that
n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)| ≤ η

2(1 + βε0)

when |n− n0| ≤ δ2. Putting δ = min{δ1, δ2}, we obtain

|Tφ(n)− Tφ(n0)| ≤ η

2
+ βε0

η

2(1 + βε0)

≤ η

2
+

η

2
= η.

This shows that the pointwise equicontinuity of the functions in T (Sε).
Therefore, by the Schauder - Tychonoff Theorem, there exists a function
x ∈ Sε such that Tx = x or

x(n) = y(n) +
n∑

s=0

R(n, s)g(s, x(s)).

This completes the proof.

Under the assumptions in Theorem 2.2 we can obtain one asymptotic
stability theorem as a corollary.

Corollary 2.3. Let y(n) be a solution of (2.2). Suppose that

(i)
∑n

s=0 |R(n, s)| ≤ c for some c > 0,
(ii) for any n0 > 0,

lim
n→∞[

n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)|] = 0, n > n0 > 0,

(iii) for any λ with 0 < λ < 1 and ε > 0,
|y| ≤ λε for some ε0 > 0 with 0 < ε ≤ ε0.

(iv) for any N > 0 , limn→∞
∑N

s=0 |R(n, s)| = 0.

If limn→∞ y(n) = 0, then limn→∞ x(n) = 0
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Proof. Let S0 = {φ ∈ Sε : limn→∞ φ(n) = 0}. Then S0 is a closed
subset of Sε under the uniform norm. Thus it suffices to show that
R(S0) ⊂ S0. Suppose that limn→∞ x(n) 6= 0. Then

µ = lim
n→∞ sup |x(n)| > 0 .

For a fixed number γ , let 1 − λ < γ < 1. Choose N > 0 so large that
|x(n)| ≤ µ/γ when n ≥ N . Then

|x(n)| ≤ |y(n)|+
n∑

s=0

|R(n, s)||g(s, x(s))|

≤ |y(n)|+
N∑

s=0

|R(n, s)||g(s, x(s))|+
n∑

s=N

|R(n, s)||g(s, x(s))|

≤ |y(n)|+ βε
N∑

s=0

|R(n, s)|+ β
µ

γ

n∑

s=N

|R(n, s)|.

Taking the limit sup, we obtain

µ ≤ 0 + 0 + β
µ

γ
c

<
µ

γ
(1− λ)

< µ,

a contradiction. Therefore we have limn→∞ x(n) = 0

Theorem 2.4. Assume that

(i)
∑n

s=0 |R(n, s)| ≤ c for some c > 0,
(ii) for any n0 > 0,

lim
n→∞[

n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)|] = 0, n > n0 > 0,

(iii) for any N > 0, limn→∞
∑N

s=0 |R(n, s)| = 0,
(iv) |g(n, x)| ≤ λ(n)|x|.

where λ(n) > 0, is bounded on Z+ with limn→∞ λ(n) = 0 and |λ|c ≤ 1
2 .

Then (2.1) and (2.2) are asymptotically equivalent.

Proof. Let y(n) ∈ BC be a solution of (2.2) with |y| ≤ k for some
k > 0. Consider the set

Sk = {φ ∈ BS : |φ| ≤ 2k}.



318 Sung Kyu Choi, Jin Soon Kim, and Namjip Koo

Define the operator T : Sk → BC by

Tφ(n) = y(n)−
n∑

s=0

R(n, s)g(s, φ(s)).

Then T is continuous as in the proof of Theorem 2.2.
Also, T (Sk) ⊂ Sk since

|Tφ(n)| ≤ |y(n)|+
n∑

s=0

|R(n, s)||g(s, φ(s))|

≤ |y|+
n∑

s=0

|R(n, s)|λ(s)|φ(s)|

≤ k + C|λ|2k

= 2k.

To show that T (Sk) is equicontinuous, let n0 ∈ Z+ and n > n0.
We have

| Tφ(n) −Tφ(n0)| ≤ |y(n)− y(n0)|

+ sup
0≤s≤n

|g(s, φ(s))|[
n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)|]

≤ |y(n)− y(n0)|+ 2|λ|k[
n0∑

s=0

|R(n, s)−R(n0, s)|

+
n∑

s=n0+1

|R(n, s)|].

For any ε > 0, there exists a δ1 > 0 such that

|y(n)− y(n0)| ≤ ε

2
, when |n− n0| ≤ δ1.

Also, there exists a δ2 > 0 such that
n0∑

s=0

|R(n, s)−R(n0, s)|+
n∑

s=n0+1

|R(n, s)| ≤ ε

4k|λ| ,

when |n− n0| ≤ δ2.

(2.7)

Hence, by putting δ = min{δ1, δ2}, we obtain

|Tφ(n)− Tφ(n0)| ≤ ε

2
+ 2|λ|k ε

4|λ|k
= ε



Volterra difference systems 319

whenever |n − n0| ≤ δ . Therefore there exists solution x(n) ∈ BS of
(2.1) by the Schauder - Tychonoff Theorem.

We show that limn→∞[x(n)− y(n)] = 0. Let ε > 0 be given. From
(iv), there exists N > 0 such that

(2.8) |λ(n)| ≤ ε

4kc
, n ≥ N.

We can choose N1 ≥ N such that
N∑

s=0

|R(n, s)| ≤ ε

4|λ|k , n ≥ N1

from (iii). Now we have

|x(n)− y(n)| ≤
N∑

s=0

|R(n, s)|λ(s)|x(s)|+
n∑

s=N+1

|R(n, s)|λ(s)|x(s)|

≤ 2k|λ|
N∑

s=0

|R(n, s)|+ 2k sup
N≤n<∞

λ(n)
n∑

s=0

|R(n, s)|

≤ 2k|λ| ε

4k|λ| + 2kc
ε

4kc

≤ ε

2
+

ε

2
= ε , n ≥ N1.

Since ε > 0 is arbitrary this shows the assertion.
For the converse, let x ∈ BC be a solution of (2.1). Define

y(n) = x(n) +
n∑

s=0

R(n, s)g(s, x(s)).

Then it is easy to show that y(n) is a solution of (2.2) and y ∈ BC
since

|y(n)| ≤ |x(n)|+ c|λ||x|
< ∞ , 0 ≤ n < ∞ .

To show that limn→∞[y(n)− x(n)] = 0 , let ε > 0 and |x| ≤ k.
Then

|y(n)− x(n)| ≤
N∑

s=0

|R(n, s)|λ(s)|x(s)|+
n∑

s=N

|R(n, s)|λ(s)|x(s)|

≤ |λ|k ε

4k|λ| +
ε

4kc
kc
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by (2.7) and (2.8). Hence |y(n)− x(n)| ≤ ε
2 . Since ε > 0 is arbitrary we

show that the asymptotic relationship holds, and the proof is complete.
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