JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 3, September 2007

ASYMPTOTIC EQUIVALENCE OF VOLTERRA DIFFERENCE SYSTEMS

SUNG KYU CHOI *, JIN SOON KIM **, AND NAMJIP KOO ***

ABSTRACT. We obtain a discrete analogue of Nohel's result in [5] about asymptotic equivalence between perturbed Volterra system and unperturbed system.

1. Introduction

Let $\mathbb{Z}_+ = \{0, 1, 2, \cdots\}$ and \mathbb{R}^d be the *d*-dimensional real Euclidean space with norm

$$|x| = \sum_{i=1}^{d} |x_i|, \qquad x = (x_1, \cdots, x_d) \in \mathbb{R}^d.$$

For a $d \times d$ matrix $A = [a_{ij}]$ on $\mathbb{Z}_+ \times \mathbb{Z}_+$, the norm of A is given by

$$|A| = \sum_{i=1}^{d} \sum_{j=1}^{d} |a_{ij}|.$$

Let BC be the space of all bounded sequences equipped with the norm

$$|\phi| = \sup_{n \ge 0} |\phi(n)| , \quad \phi \in BC.$$

We consider the perturbed system of Volterra difference equations

(1.1)
$$x(n) = f(n) + \sum_{s=0}^{n} B(n,s)[x(s) + g(s,x(s))], \quad n \ge 0$$

Received August 6, 2007.

2000 Mathematics Subject Classification: Primary 39A12, 45E99.

Key words and phrases: Volterra difference system, resolvent matrix, asymptotic equivalence.

This work was supported by the Korea Research Foundation Grant founded by the Korea Government(MOEHRD)(KRF-2005-070-C00015).

and unperturbed system

(1.2)
$$y(n) = f(n) + \sum_{s=0}^{n} B(n,s)y(s).$$

Two systems (1.1) and (1.2) are asymptotically equivalent if for every bounded solution x(n) of (1.1), there exists a bounded solution y(n) of (1.2) such that

(1.3)
$$\lim_{n \to \infty} [x(n) - y(n)] = 0$$

and conversely, for each bounded solution v(n) of (1.2) there exists a bounded solution u(n) of (1.1) such that

$$\lim_{n \to \infty} [u(n) - v(n)] = 0.$$

The purpose of this paper is to obtain the asymptotic equivalence between (1.1) and (1.2) as a discrete analogue of Nohel's result in [5].

For the asymptotic equivalence between perturbed Volterra difference system

$$x(n+1) = A(n)x(n) + \sum_{s=0}^{n} B(n,s)x(s) + f(n), \quad n \ge 0$$

and linear Volterra difference system

$$y(n+1) = A(n)y(n) + \sum_{s=0}^{n} B(n,s)y(s), \quad n \ge 0,$$

see [1] and [2].

2. Main Results

Consider the perturbed system of Volterra difference equations

(2.1)
$$x(n) = f(n) + \sum_{s=0}^{n} B(n,s)[x(s) + g(s,x(s))], \quad n \ge 0$$

and unperturbed system

(2.2)
$$y(n) = f(n) + \sum_{s=0}^{n} B(n,s)y(s),$$

where $x, y, f: \mathbb{Z}_+ \to \mathbb{R}^d$, B is a $d \times d$ matrix on $\mathbb{Z}_+ \times \mathbb{Z}_+$, and g(n, x)is defined for $n \ge 0$, $|x| < \infty$ and is continuous in x, g(n, 0) = 0 with (2.3) g(n, x) = o(|x|) uniformly in n, as $|x| \to 0$.

Note that the solution y(n) can be represented by

(2.4)
$$y(n) = f(n) - \sum_{k=0}^{n} R(n,k)f(k),$$

where the resolvent matrix R(n,m) satisfies

(2.5)
$$R(n,m) = \sum_{j=m}^{n} B(n,j)B(j,m) - B(n,m), \quad 0 \le m \le n.$$

 $\operatorname{See}[4].$

Firstly, we show that the following representation is a solution of (2.1).

THEOREM 2.1. The solution x(n) of (2.1) is given by the form

(2.6)
$$x(n) = f(n) - \sum_{k=0}^{n} R(n,k)[f(k) + g(k,x(k))].$$

Proof. We have

$$\begin{aligned} x(n) &= \sum_{k=0}^{n} B(n,k)g(k,x(k)) + f(n) - \sum_{k=0}^{n} R(n,k)f(k) \\ &= \sum_{k=0}^{n} B(n,k)g(k,x(k)) + f(n) \\ &- \sum_{k=0}^{n} R(n,k)[\sum_{l=0}^{k} B(k,l)g(l,x(l)) + f(k)]. \end{aligned}$$

Thus

$$\begin{aligned} x(n) - f(n) &+ \sum_{k=0}^{n} R(n,k) f(k) - \sum_{l=0}^{n} B(n,l) g(l,x(l)) \\ &= -\sum_{k=0}^{n} R(n,k) \sum_{l=0}^{k} B(k,l) g(l,x(l)) \\ &= -\sum_{k=0}^{n} \sum_{l=0}^{k} R(n,k) B(k,l) g(l,x(l)). \end{aligned}$$

Sung Kyu Choi, Jin Soon Kim, and Namjip Koo

Hence we obtain

$$\begin{aligned} x(n) &= f(n) - \sum_{k=0}^{n} R(n,k) f(k) - \sum_{k=0}^{n} [R(n,k)B(k,l) - B(n,l)]g(l,x(l)) \\ &= f(n) - \sum_{k=0}^{n} R(n,k) [f(n) + g(k,x(k))]. \end{aligned}$$

by(2.5).

by(2.5).

We need the following fixed point theorem.

Schauder - Tychonoff Theorem [3] Let C(J) denote the set of all functions which are continuous on the interval J, and let F be the subset formed by those functions x(t) such that

$$|x(t)| \le \mu(t)$$
 for all $t \in J$,

where $\mu(t)$ is a fixed positive continuous function.

Let T be a mapping of F into itself with the properties

(i) T is continuous, in the sense that if $x_n \in F$, $n = 1, 2, \cdots$, and $x_n \to x$ uniformly on every compact subinterval of J, then $Tx_n \to Tx$ uniformly on every compact subinterval of J,

(ii) The image set T(F) is equicontinuous and bounded at every point of J.

Then T has at least one fixed point in F.

THEOREM 2.2. Let y(n) be a bounded solution of (2.2). Suppose that

 $\begin{array}{ll} (\mathrm{i}) \;\; \sum_{s=0}^n |R(n,s)| \leq c, & \mbox{for some } \; c>0, \\ (\mathrm{ii}) \;\; \mbox{for any } n_0>0, \end{array}$

$$\lim_{n \to \infty} \left[\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| + \sum_{s=n_0+1}^n |R(n,s)| \right] = 0, n > n_0 > 0,$$

(iii) for any λ with $0 < \lambda < 1$ and $\epsilon > 0$, $|y| \le \lambda \epsilon$ for some $\epsilon_0 > 0$ with $0 < \epsilon \leq \epsilon_0$.

Then there exists at least one solution x(n) of (2.1) such that $x \in BC$ and $|x| \leq \epsilon$.

Proof. In view of the assumption (2.3), there exists an $\epsilon_0 > 0$ such that $|x| \leq \epsilon_0$ implies $|g(n,x)| \leq \beta |x|$ uniformly in n for some $\beta > 0$ with $\beta c < 1 - \lambda$. Let $0 < \epsilon \leq \epsilon_0$. Consider the set

$$S_{\epsilon} = \{ \phi \in BC : |\phi| \le \epsilon \}.$$

Define the operator $T: S_{\epsilon} \to BC$ by the relation

$$T\phi(n) = y(n) + \sum_{s=0}^{n} R(n,s)g(s,\phi(s)), \quad n \ge 0.$$

We claim that $T(S_{\epsilon}) \subset S_{\epsilon}$. Using (i) and (iii), we have

$$\begin{aligned} |T\phi(n)| &\leq |y(n)| + \sum_{s=0}^{n} |R(n,s)| |g(s,\phi(s))| \\ &\leq |y| + c\beta \sup_{n\geq 0} |\phi(n)| \\ &\leq |y| + c\beta\epsilon \\ &\leq \lambda\epsilon + (1-\lambda)\epsilon = \epsilon. \end{aligned}$$

For the proof of continuity of T, we let $\phi_m \in S_{\epsilon}$ and suppose $\phi_m \to \phi$ uniformly on every compact subset of \mathbb{Z}_+ . Then

$$|T\phi(n) - T\phi_m(n)| \leq \sum_{s=0}^{n} |R(n,s)| |g(s,\phi(s)) - g(s,\phi_m(s))|$$

$$\leq c \sup_{0 \leq s \leq n} |g(s,\phi(s)) - g(s,\phi_m(s))|$$

which tends to zero as $n \to \infty$, uniformly on compact subset of \mathbb{Z}_+ since g(n, x) is continuous in x.

Now we show that $T(S_{\epsilon})$ is equicontinuous. To do this we let $n_o \in \mathbb{Z}_+$ and $n > n_0$ (the same argument applies to $n < n_0$). Let $\epsilon > 0$ be given. We show that there exists a $\delta > 0$ such that $|n - n_0| \leq \delta$ implies $|T\phi(n) - T\phi(n_0)| < \epsilon$. From the assumptions we have

$$\begin{aligned} |T\phi(n) &- T\phi(n_0)| \\ &\leq |y(n) - y(n_0)| + |\sum_{s=0}^n R(n,s) - \sum_{s=0}^{n_0} R(n_0,s)| |g(s,\phi(s))| \\ &= |y(n) - y(n_0)| + [\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| \\ &+ \sum_{s=n_0+1}^n |R(n,s)|] |g(s,\phi(s))| \end{aligned}$$

Sung Kyu Choi, Jin Soon Kim, and Namjip Koo

$$\leq |y(n) - y(n_0)| + \sup_{0 \leq s \leq n} |g(s, \phi(s))| [\sum_{s=0}^{n_0} |R(n, s) - R(n_0, s)| + \sum_{s=n_0+1}^n |R(n, s)|].$$

Let $\eta > 0$ be given. Choose a $\delta_1 > 0$ such that

$$y(n) - y(n_0)| \le \eta/2$$
 when $|n - n_0| \le \delta_1$.

By (ii), choose a $\delta_2 > 0$ such that

$$\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| + \sum_{s=n_0+1}^n |R(n,s)| \le \frac{\eta}{2(1+\beta\epsilon_0)}$$

when $|n - n_0| \leq \delta_2$. Putting $\delta = \min{\{\delta_1, \delta_2\}}$, we obtain

$$|T\phi(n) - T\phi(n_0)| \leq \frac{\eta}{2} + \beta \epsilon_0 \frac{\eta}{2(1+\beta\epsilon_0)}$$
$$\leq \frac{\eta}{2} + \frac{\eta}{2} = \eta.$$

This shows that the pointwise equicontinuity of the functions in $T(S_{\epsilon})$. Therefore, by the Schauder - Tychonoff Theorem, there exists a function $x \in S_{\epsilon}$ such that Tx = x or

$$x(n) = y(n) + \sum_{s=0}^{n} R(n,s)g(s,x(s)).$$

This completes the proof.

Under the assumptions in Theorem 2.2 we can obtain one asymptotic stability theorem as a corollary.

COROLLARY 2.3. Let y(n) be a solution of (2.2). Suppose that (i) $\sum_{s=0}^{n} |R(n,s)| \le c$ for some c > 0, (ii) for any $n_0 > 0$,

$$\lim_{n \to \infty} \left[\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| + \sum_{s=n_0+1}^n |R(n,s)| \right] = 0, n > n_0 > 0,$$

(iii) for any λ with $0 < \lambda < 1$ and $\epsilon > 0$,

 $\begin{aligned} |y| &\leq \lambda \epsilon \text{ for some } \epsilon_0 > 0 \text{ with } 0 < \epsilon \leq \epsilon_0. \\ \text{(iv) for any } N > 0 \text{ , } \lim_{n \to \infty} \sum_{s=0}^N |R(n,s)| = 0. \end{aligned}$ If $\lim_{n\to\infty} y(n) = 0$, then $\lim_{n\to\infty} x(n) = 0$

Proof. Let $S_0 = \{\phi \in S_{\epsilon} : \lim_{n \to \infty} \phi(n) = 0\}$. Then S_0 is a closed subset of S_{ϵ} under the uniform norm. Thus it suffices to show that $R(S_0) \subset S_0$. Suppose that $\lim_{n \to \infty} x(n) \neq 0$. Then

$$\mu = \lim_{n \to \infty} \sup |x(n)| > 0 \; .$$

For a fixed number γ , let $1-\lambda<\gamma<1.$ Choose N>0 so large that $|x(n)|\leq \mu/\gamma$ when $n\geq N.$ Then

$$\begin{aligned} |x(n)| &\leq |y(n)| + \sum_{s=0}^{n} |R(n,s)| |g(s,x(s))| \\ &\leq |y(n)| + \sum_{s=0}^{N} |R(n,s)| |g(s,x(s))| + \sum_{s=N}^{n} |R(n,s)| |g(s,x(s))| \\ &\leq |y(n)| + \beta \epsilon \sum_{s=0}^{N} |R(n,s)| + \beta \frac{\mu}{\gamma} \sum_{s=N}^{n} |R(n,s)|. \end{aligned}$$

Taking the limit sup, we obtain

$$\leq 0+0+etarac{\mu}{\gamma}c \ < rac{\mu}{\gamma}(1-\lambda) \ < \mu,$$

a contradiction. Therefore we have $\lim_{n\to\infty} x(n) = 0$

 μ

THEOREM 2.4. Assume that

(i) $\sum_{s=0}^{n} |R(n,s)| \leq c$ for some c > 0, (ii) for any $n_0 > 0$,

$$\lim_{n \to \infty} \left[\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| + \sum_{s=n_0+1}^n |R(n,s)| \right] = 0, n > n_0 > 0,$$

(iii) for any N > 0, $\lim_{n \to \infty} \sum_{s=0}^{N} |R(n,s)| = 0$, (iv) $|g(n,x)| \le \lambda(n)|x|$.

where $\lambda(n) > 0$, is bounded on \mathbb{Z}_+ with $\lim_{n\to\infty} \lambda(n) = 0$ and $|\lambda| c \leq \frac{1}{2}$. Then (2.1) and (2.2) are asymptotically equivalent.

Proof. Let $y(n) \in BC$ be a solution of (2.2) with $|y| \leq k$ for some k > 0. Consider the set

$$S_k = \{ \phi \in BS : |\phi| \le 2k \}.$$

Define the operator $T: S_k \to BC$ by

$$T\phi(n) = y(n) - \sum_{s=0}^{n} R(n,s)g(s,\phi(s)).$$

Then T is continuous as in the proof of Theorem 2.2.

Also, $T(S_k) \subset Sk$ since

$$\begin{aligned} |T\phi(n)| &\leq |y(n)| + \sum_{s=0}^{n} |R(n,s)| |g(s,\phi(s))| \\ &\leq |y| + \sum_{s=0}^{n} |R(n,s)|\lambda(s)|\phi(s)| \\ &\leq k + C|\lambda|2k \\ &= 2k. \end{aligned}$$

To show that $T(S_k)$ is equicontinuous, let $n_0 \in \mathbb{Z}_+$ and $n > n_0$. We have

$$| T\phi(n) - T\phi(n_0)| \le |y(n) - y(n_0)|$$

$$+ \sup_{0 \le s \le n} |g(s, \phi(s))| [\sum_{s=0}^{n_0} |R(n, s) - R(n_0, s)| + \sum_{s=n_0+1}^{n} |R(n, s)|]$$

$$\le |y(n) - y(n_0)| + 2|\lambda| k [\sum_{s=0}^{n_0} |R(n, s) - R(n_0, s)|$$

$$+ \sum_{s=n_0+1}^{n} |R(n, s)|].$$

For any $\epsilon > 0$, there exists a $\delta_1 > 0$ such that

$$|y(n) - y(n_0)| \le \frac{\epsilon}{2}$$
, when $|n - n_0| \le \delta_1$.

Also, there exists a $\delta_2 > 0$ such that

(2.7)
$$\sum_{s=0}^{n_0} |R(n,s) - R(n_0,s)| + \sum_{s=n_0+1}^n |R(n,s)| \le \frac{\epsilon}{4k|\lambda|},$$

when $|n - n_0| \le \delta_2.$

Hence, by putting $\delta = \min{\{\delta_1, \delta_2\}}$, we obtain

$$|T\phi(n) - T\phi(n_0)| \leq \frac{\epsilon}{2} + 2|\lambda|k\frac{\epsilon}{4|\lambda|k}$$
$$= \epsilon$$

whenever $|n-n_0|\leq \delta$. Therefore there exists solution $x(n)\in BS$ of (2.1) by the Schauder - Tychonoff Theorem.

We show that $\lim_{n\to\infty} [x(n) - y(n)] = 0$. Let $\epsilon > 0$ be given. From (iv), there exists N > 0 such that

(2.8)
$$|\lambda(n)| \le \frac{\epsilon}{4kc}, \quad n \ge N.$$

We can choose $N_1 \geq N$ such that

$$\sum_{s=0}^{N} |R(n,s)| \le \frac{\epsilon}{4|\lambda|k} , \quad n \ge N_1$$

from (iii). Now we have

$$\begin{aligned} |x(n) - y(n)| &\leq \sum_{s=0}^{N} |R(n,s)|\lambda(s)|x(s)| + \sum_{s=N+1}^{n} |R(n,s)|\lambda(s)|x(s)| \\ &\leq 2k|\lambda| \sum_{s=0}^{N} |R(n,s)| + 2k \sup_{N \leq n < \infty} \lambda(n) \sum_{s=0}^{n} |R(n,s)| \\ &\leq 2k|\lambda| \frac{\epsilon}{4k|\lambda|} + 2kc \frac{\epsilon}{4kc} \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon , \qquad n \geq N_1. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary this shows the assertion.

For the converse, let $x \in BC$ be a solution of (2.1). Define

$$y(n) = x(n) + \sum_{s=0}^{n} R(n,s)g(s,x(s)).$$

Then it is easy to show that y(n) is a solution of (2.2) and $y \in BC$ since

$$\begin{array}{rrr} |y(n)| & \leq & |x(n)|+c|\lambda||x| \\ & < & \infty \ , & 0 \leq n < \infty \ . \end{array}$$

To show that $\lim_{n\to\infty}[y(n)-x(n)]=0~$, let $\epsilon>0~$ and $|x|\leq k.$ Then

$$\begin{aligned} |y(n) - x(n)| &\leq \sum_{s=0}^{N} |R(n,s)|\lambda(s)|x(s)| + \sum_{s=N}^{n} |R(n,s)|\lambda(s)|x(s)| \\ &\leq |\lambda|k \frac{\epsilon}{4k|\lambda|} + \frac{\epsilon}{4kc}kc \end{aligned}$$

Sung Kyu Choi, Jin Soon Kim, and Namjip Koo

by (2.7) and (2.8). Hence $|y(n) - x(n)| \le \frac{\epsilon}{2}$. Since $\epsilon > 0$ is arbitrary we show that the asymptotic relationship holds, and the proof is complete.

References

- S. K. Choi and N. J. Koo, Asymptotic equivalence between two linear Volterra difference systems, Computers Math. Applic. 47 (2004), 461-471.
- [2] S. K. Choi and N. J. Koo, Asymptotic property of linear Volterra difference systems, J. Math. Anal. Appl. 321 (2006), 260-272.
- W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath & Co., Boston, 1965.
- [4] V. B. Kolmanovskii, On asymptotic equivalence of the solutions of some Volterra difference equations, Auto. Remote Control. 62 (2001), 548-556
- [5] J. A. Nohel, Asymptotic relationship between systems of Volterra equations, Annali de Matematica Pura ed Applicata 90 (1971), 149-165.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: skchoi@math.cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: njkoo@math.cnu.ac.kr