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ASYMPTOTIC EQUIVALENCE OF VOLTERRA
DIFFERENCE SYSTEMS

Sunc Kyu CHor *, JIN SooN Kim ** AND NamJip Koo ***

ABSTRACT. We obtain a discrete analogue of Nohel’s result in [5]
about asymptotic equivalence between perturbed Volterra system
and unperturbed system.

1. Introduction

Let Z, = {0,1,2,---} and R? be the d-dimensional real Euclidean
space with norm

d
| = |wil, @ = (21, za) €RY
=1

For a d x d matrix A = [a;;] on Z; X Zy , the norm of A is given by

d d
A=) agl.

i=1 j=1
Let BC' be the space of all bounded sequences equipped with the norm
|¢| = sup|p(n)| , ¢ € BC.
n>0

We consider the perturbed system of Volterra difference equations

(L.1) z(n) = f(n) + ) _ B(n,s)x(s) +g(s,2(s)], n=0
s=0
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and unperturbed system
(1.2) y(n) = f(n) + ) B(n,s)y(s).
s=0

Two systems (1.1) and (1.2) are asymptotically equivalent if for every
bounded solution z(n) of (1.1), there exists a bounded solution y(n) of
(1.2) such that

(1.3) lim [z(n) — y(n)] = 0

and conversely, for each bounded solution v(n) of (1.2) there exists a
bounded solution u(n) of (1.1) such that

lim [u(n) —v(n)] = 0.
n—oo
The purpose of this paper is to obtain the asymptotic equivalence
between (1.1) and (1.2) as a discrete analogue of Nohel’s result in [5].
For the asymptotic equivalence between perturbed Volterra difference
system
n
z(n+1) = A(n)xz(n) + Z B(n,s)x(s) + f(n), n>0
s=0
and linear Volterra difference system

y(n+1) = A(n)y(n) + ) _B(n,s)y(s), n=0,
5=0

see [1] and [2].

2. Main Results

Consider the perturbed system of Volterra difference equations
(1) wl)= f) + > B o)la(s) +gls.a(s)]. >0
and unperturbed system -

22) ) = )+ 3 B, )y(s).
5=0

where z, y, f:7Z4 — R%, Bis adx d matrix on Z, x Z,, and g(n,x)
is defined for n > 0, |z| < co and is continuous in z, g(n,0) = 0 with

(2.3) g(n,z) = o(]z|) uniformly in n, as |z| — 0.
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Note that the solution y(n) can be represented by
(2.4) y(n) = f(n) =Y _ R(nk)f(k),
k=0

where the resolvent matrix R(n,m) satisfies
n
(25)  R(nom) = B(n,j)B(j.m) — B(n,m), 0<m <n.
Jj=m

Seel[4].
Firstly, we show that the following representation is a solution of
(2.1).

THEOREM 2.1. The solution x(n) of (2.1) is given by the form

(2.6) w(n) = f(n) = Y R(n, k)[f (k) + g(k, 2(k))].

k=0

n

Proof. We have

n

z(n) = Y Blnk)g(k,z(k) + f(n) =Y R(n,k)f(k)
k=0

k=0

= 3" B(n,k)g(k,z(k)) + f(n)
k=0

n k
= Y _Rm, k) Bk D) + f(k)).
k=0 0

=

Thus

z(n) = f(n) + D R(nk)f(k)=Y_ B(n,Dg(l,z(1))
k=0 =0
n k
k=0 =0
k
> " R(n,k)B(k,)g(l, x(1)).

k=0 1=0

I
MS



314 Sung Kyu Choi, Jin Soon Kim, and Namjip Koo

Hence we obtain

z(n) = f(n)=> R(n,k)f(k) = [R(n,k)B(k,1) — B(n,1)]g(l,z(1))
k=0 k=0
= f(n) =Y _R(n,k)[f(n)+ g(k,z(k))].
k=0
by(2.5). O

We need the following fixed point theorem.

Schauder - Tychonoff Theorem [3] Let C(J) denote the set of all
functions which are continuous on the interval J, and let I’ be the subset
formed by those functions z(t) such that

lz(t)| < p(t) forall teJ,

where p(t) is a fixed positive continuous function.

Let T be a mapping of F' into itself with the properties

(i) T is continuous, in the sense that if x,, € F, n = 1,2,---, and
Ty — x uniformly on every compact subinterval of J, then Tz, — Tx
uniformly on every compact subinterval of J,

(ii) The image set T'(F') is equicontinuous and bounded at every point
of J.

Then T has at least one fixed point in F'.

THEOREM 2.2. Let y(n) be a bounded solution of (2.2). Suppose
that
(i) Yio|R(n,s)] <¢, forsome c>0,
(ii) for any ng > 0,
no n
Tim [ [R(n,s) = R(no,s)| + Y |R(n,s)[] =0,n>ng >0,
s=0 s=np+1
(iii) for any A with 0 <A <1 and € >0, |y| < Ae for some ¢y > 0
with 0 < € < €.

Then there exists at least one solution z(n) of (2.1) such that x € BC
and |z| < e.

Proof. In view of the assumption (2.3), there exists an ey > 0 such
that |z| < ¢y implies |g(n, z)| < S|z| uniformly in n for some 5 > 0 with
Bc<1— A Let 0 < e < ¢y Consider the set

Se={¢ € BC: |¢| < e}
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Define the operator T : S¢ — BC by the relation
Té(n) = y(n) + ) R(n,s)g(s,0(s), n=>0.
s=0
We claim that T'(S.) C S.. Using (i) and (iii), we have

To(n)] < [y(n)| + D |R(n,9)llg(s, &(s))]
s=0

< |y| 4+ ¢B sup|o(n)|
n>0

<yl + cBe

< Ae+(1=Ne=e.

For the proof of continuity of T', we let ¢,,, € S¢ and suppose ¢, — ¢
uniformly on every compact subset of Z,. Then

ITo(n) — Tom(n)| < D _|R(n,3)llg(s, 6(s)) = g(s, m(s))]
s=0
< ¢ sup |g(s,é(s)) — g(s, dm(s))]

0<s<n

which tends to zero as n — oo, uniformly on compact subset of Z, since
g(n,z) is continuous in x.

Now we show that 7T'(S,) is equicontinuous. To do this we let n, € Z4
and n > ng (the same argument applies to n < ng). Let € > 0 be given.
We show that there exists a d > 0 such that |n — ng| < § implies
|Tp(n) — Te(no)| < e. From the assumptions we have

To(n) — Té(no)l
< ly(n) = y(no)l + 1Y Rln,s) =Y R(no, s)llg(s, 6(s))|
s=0

s=0

= ly(n) —y(no)l + [D_ |R(n,s) — R(no, s)|
s=0

+ D R, 9)[llg(s, 6(s))]

s=np+1
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< ly(n) —y(no)l + sup |g(s,¢())ID_ |R(n,s) — R(no, )|
s=0

0<s<n

+ > [R(n,9)].

s=ng+1
Let n > 0 be given. Choose a §; > 0 such that

ly(n) —y(no)| < n/2 when |n — ng| < 4.
By (ii), choose a d2 > 0 such that

n

no n
g |R(n,s) — R(no, s)| + S%}:ﬂ |R(n,s)| < 20+ fBeo)

when |n — ng| < d2. Putting 0 = min{dy, d2}, we obtain
n n
Té(n) — T < 1 S
7o) = To(m)| < + Pz
n.,.n

< Ty
S gt =

This shows that the pointwise equicontinuity of the functions in 7'(.Se).

Therefore, by the Schauder - Tychonoff Theorem, there exists a function
r € S, such that Tx = x or

z(n) = y(n) + Y R(n, s)g(s, 2(s)).
s=0

This completes the proof. O

Under the assumptions in Theorem 2.2 we can obtain one asymptotic
stability theorem as a corollary.

COROLLARY 2.3. Let y(n) be a solution of (2.2). Suppose that

(i) Yu_y|R(n,s)| < c for some ¢ > 0,
(ii) for any ng > 0,

no n
lim [} " |R(n,s) — R(no,s)| + > [R(n,s)]] =0,n>ng >0,
s=0 s=np+1

(iii) for any A with0 < A <1 and ¢ > 0,
ly| < e for some €p > 0 with 0 < € < €.
(iv) for any N > 0, lim, Zivzo |R(n,s)| = 0.

If lim,, .o y(n) = 0, then lim, . x(n) =0
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Proof. Let Sy = {¢ € S, : limy,—,o0 ¢(n) = 0}. Then Sy is a closed
subset of S, under the uniform norm. Thus it suffices to show that
R(Sp) C Sp. Suppose that lim,_,oc z(n) # 0. Then

p = lim sup|z(n)| >0 .
n—oo

For a fixed number v , let 1 — A < < 1. Choose N > 0 so large that
|x(n)| < pu/v when n > N. Then

n

e(n)] < ly(n)|+ Y [R(n, 5)llg(s, x(s))]

s=0
N n

< Jym)| + D IR, 8)llg(s, x() + D [R(n,5)|lg(s, 2(s))|
s=0 s=N

N n
< ly(m)| +Be S [R(n,s)| + B2 N [R(n, 5)].
s=0 v s=N
Taking the limit sup, we obtain

po< 0+0+ gl
v

u
—(1=X)
~
1,
a contradiction. Therefore we have lim,, . x(n) = 0 O

THEOREM 2.4. Assume that

(i) Yr o |R(n,s)| <c for some ¢>0,
(ii) for any ng > 0,

no n
lim [} " |R(n,s) — R(no,s)| + > [R(n,s)]] =0,n>ng >0,
s=0 s=np+1

(iii) for any N > 0, lim, 0o Yoo |R(n, )| = 0,

(iv) lg(n, )| < A(n)]z].
where A(n) > 0, is bounded on Z,. with lim, .., A(n) = 0 and [A|c < 1.
Then (2.1) and (2.2) are asymptotically equivalent.

Proof. Let y(n) € BC be a solution of (2.2) with |y| < k for some
k > 0. Consider the set

Sy =1{p € BS:|¢| < 2k).
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Define the operator T': Sy, — BC by
Té(n) = y(n) = > R(n,s)g(s, 6(s)).
s=0

Then T is continuous as in the proof of Theorem 2.2.
Also, T'(Si) C Sk since

To(n)] < ly(n)[+ Y [R(n,s)l|g(s, 6(s))|
s=0

<yl + Y 1R(n, 5)|A(s)|é(s)]
s=0
< k+CA2k

2k.

To show that T'(Sy) is equicontinuous, let ng € Z4 and n > nyg.
We have

| To(n) —To(no)l < ly(n) — y(no)|

+ sup |g(s, (DI [R(n,s) = Rng,s)| + Y |R(n,s)]]
s=0

0<s<n s=nog+1
< Jy(n) = y(no)| + 2(Ak[Y_ [R(n, s) = R(no,s)|
s=0
+ Z |R(n, s)]].

s=nog+1
For any € > 0, there exists a §; > 0 such that

[y(n) = y(no)| < 5,

Also, there exists a d2 > 0 such that

when |n — ng| < 4.

no n
€
; |R(n,s) — R(no, s)| + Z |R(n,s)| < Y )

s=ng+1

(2.7)
when |n — ng| < da.

Hence, by putting 6 = min{d;, d2}, we obtain
€

ANk

Té(n) = To(no)| < 5 +2/Alk

= €
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whenever |n — ng| < § . Therefore there exists solution z(n) € BS of
(2.1) by the Schauder - Tychonoff Theorem.

We show that lim,_.o[x(n) —y(n)] =0. Let € >0 be given. From
(iv), there exists N > 0 such that

€

2. < — > N.
(28) A < g n>
We can choose Ny > N such that
N €
R < > N-

from (iii). Now we have

n

N
z(n) —y(n)] < D IR, s)As)|x(s)| + D [R(n,5)|A(s)|z(s)]
s=0

s=N+1
N n
< 2K\ |R(n, )| +2k sup A(n) > |R(n,s)|
s=0 N<n<oo s=0
< kA + 2ke——
= Ak ke
€ €
< 5 + 5 =€, n > Ni.

Since € > 0 is arbitrary this shows the assertion.
For the converse, let x € BC be a solution of (2.1). Define

y(n) =z(n) + Z R(n,s)g(s, x(s)).
s=0

Then it is easy to show that y(n) is a solution of (2.2) and y € BC
since

ly(n)| < fz(n)| + cAl[z|
< o0, 0<n< .

To show that lim,_[y(n) —z(n)] =0 ,let ¢ >0 and |z| < k.
Then

N n
ly(n) —z(m)] < Y IR, s)As)a(s)| + D 1R(n, s)|A(s)]2(s)|
s=0 s=N
S |)\|]{ € €

N T ke
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by (2.7) and (2.8). Hence |y(n) — z(n)| < §. Since € > 0 is arbitrary we
show that the asymptotic relationship holds, and the proof is complete.
O
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