JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 3, September 2007

INTUITIONISTIC (T, S)-NORMED FUZZY **SUBALGEBRAS OF** BCK-ALGEBRAS

Kyung Ho Kim*

ABSTRACT. Using t-norm T and s-norm S, we introduce the notion of intuitionistic (T, S)-normed fuzzy subalgebra in BCK/BCIalgebra, and some related properties are investigated.

1. Introduction

The notion of BCK-algebras was proposed by Imai and Iséki in 1966. In the same year, Iséki [5] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. After the introduction of the concept of fuzzy sets by Zadeh [10], several researches were conducted on the generalization of the notion of fuzzy sets. The idea of "intuitionistic fuzzy set" was first published by Atanassov [2, 3], as a generalization of the notion of fuzzy set. In the present paper, Using *t*-norm *T* and *s*-norm *S*, we introduce the notion of intuitionistic (*T*, *S*)-normed fuzzy subalgebra in BCK/BCI-algebra, and some related properties are investigated.

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Recall that a *BCI-algebra* is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms:

(I) ((x*y)*(x*z))*(z*y) = 0,

Received July 16, 2007.

2000 Mathematics Subject Classification: 06F35, 03G25, 03E72.

Key words and phrases: BCK/BCI-algebra, t-norm(s-norm), T-fuzzy subalgebra, (S-fuzzy subalgebra), intuitionistic (T, S)-normed fuzzy subalgebra, intuitionistic imaginable (T, S)-fuzzy subalgebra.

The research on which this paper is based was supported by a grant from Chungju National University Research Foundation, 2006.

- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0, and

(IV) x * y = 0 and y * x = 0 imply x = y

for every $x, y, z \in X$. A BCI-algebra X satisfying the condition (V) 0 * x = 0 for all $x \in X$

is called a *BCK-algebra*. In any BCK/BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCK/BCI-algebra X has the following properties:

(2.1) x * 0 = x,

 $(2.2) \quad (x*y)*z = (x*z)*y,$

- (2.3) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$,
- (2.4) $(x * z) * (y * z) \le x * y$

for all $x, y, z \in X$.

A non-empty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. A mapping $f : X \to Y$ of BCK/BCI-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. Let X be a BCK/BCI-algebra. A fuzzy set f in

X, i.e., a mapping $f : X \to [0,1]$, is called a *fuzzy subalgebra* of X if $f(x * y) \ge f(x) \land f(y)$ for all $x, y \in X$. Note that if f is a fuzzy subalgebra of a BCK/BCI-algebra X, then $f(0) \ge f(x)$ for all $x \in X$.

DEFINITION 2.1. [1] By a *t*-norm T, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(T1) T(x, 1) = x, (T2) $T(x, y) \le T(x, z)$ if $y \le z$, (T3) T(x, y) = T(y, x),

(T4) T(x, T(y, z)) = T(T(x, y), z),

for all $x, y, z \in [0, 1]$.

A function $\mu: X \to [0, 1]$ is called a *fuzzy subalgebra* of X with respect to a *t*-norm T (briefly, a *T*-fuzzy subalgebra of X) if

$$\mu(x * y) \ge T(\mu(x), \mu(y))$$

for all $x, y \in X$.

Every t-norm T has a useful property:

 $T(\alpha, \beta) \leq \min(\alpha, \beta)$ for all $\alpha, \beta \in [0, 1]$.

DEFINITION 2.2. [9] By a *s*-norm *S*, we mean a function $S : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

- (S1) S(x, 0) = x,
- (S2) $S(x,y) \leq S(x,z)$ if $y \leq z$,
- $(S3) \quad S(x,y) = S(y,x),$
- (S4) S(x, S(y, z)) = S(S(x, y), z),

for all $x, y, z \in [0, 1]$.

Every s-norm S has a useful property:

$$\max(\alpha, \beta) \le S(\alpha, \beta) \text{ for all } \alpha, \beta \in [0, 1].$$

For a *t*-norm (or *s*-norm) P on [0, 1], denote by Δ_P the set of element $\alpha \in [0, 1]$ such that $P(\alpha, \alpha) = \alpha$, i.e., $\Delta_P := \{\alpha \in [0, 1] \mid P(\alpha, \alpha) = \alpha\}.$

DEFINITION 2.3. Let P be a t-norm (or s-norm). A fuzzy set μ in X is said to satisfy *imaginable property with respect to* P if $\operatorname{Im}(\mu) \subseteq \Delta_P$.

A function $\mu: X \to [0, 1]$ is called a *fuzzy subalgebra* of X with respect to a s-norm S (briefly, a S-fuzzy subalgebra of X) if

$$\mu(x * y) \le S(\mu(x), \mu(y))$$

for all $x, y \in X$.

Let X denote a BCK/BCI-algebra. An *intuitionistic fuzzy set* (IFS for short) A is an object having the form

$$A=\{(x,\mu_{\scriptscriptstyle A}(x),\gamma_{\scriptscriptstyle A}(x)):x\in X\}$$

where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}.$

3. Intuitionistic (T, S)-normed fuzzy subalgebras

In what follows, let X denote a BCK/BCI-algebra unless otherwise specified.

DEFINITION 3.1. Let T be a t-norm and S be a s-norm. An IFS $A = (\mu_A, \gamma_A)$ in X is called an *intuitionistic* (T, S)-normed fuzzy subalgebras of X if

 $\mu_A(x * y) \ge T(\mu_A(x), \mu_A(y))$ and $\gamma_A(x * y) \le S(\gamma_A(x), \gamma_A(y))$

for all $x, y \in X$.

EXAMPLE 3.2. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

Let $T:[0,1]\times [0,1]\to [0,1]$ be a function defined by

$$T(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$$

for all $\alpha, \beta \in [0, 1]$ and $S : [0, 1] \times [0, 1] \rightarrow [0, 1]$ be a function defined by $S(\alpha, \beta) = \min(\alpha + \beta, 1)$

for all $\alpha, \beta \in [0, 1]$. Then *T* is a *t*-norm and *S* is a *s*-norm. Define an intuitionistic fuzzy set IFS $A = (\mu_A, \gamma_A)$ by $\mu_A(0) = \mu_A(b) = \mu_A(c) = 1, \mu_A(a) = 0$ and $\gamma_A(0) = \gamma_A(b) = \gamma_A(c) = 0, \gamma_A(a) = 1$. Then IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic (T, S)-normed fuzzy subalgebra of *X*.

DEFINITION 3.3. Let T be a t-norm and S be a s-norm on [0, 1]. An intuitionistic (T, S)-normed fuzzy subalgebra $A = (\mu_A, \gamma_A)$ is called an *intuitionistic imaginable* (T, S)-fuzzy subalgebra of X if μ_A and γ_A satisfy the imaginable property with respect to T and S respectively.

EXAMPLE 3.4. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

Define an intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ by

$$\mu_A(x) := \begin{cases} 1 & \text{if } x \in \{0, a\} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \gamma_A(x) := \begin{cases} 0 & \text{if } x \in \{0, a\} \\ 1 & \text{otherwise.} \end{cases}$$

and let $T: [0,1] \times [0,1] \rightarrow [0,1]$ be a function defined by

$$T(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$$

and and $S: [0,1] \times [0,1] \rightarrow [0,1]$ be a function defined by

$$S(\alpha, \beta) = \min(\alpha + \beta, 1)$$

for all $\alpha, \beta \in [0, 1]$. Then *T* is a *t*-norm and *S* is a *s*-norm. By routine calculations, we know that $\mu_A(x * y) \geq T(\mu_A(x), \mu_A(y))$ and $\gamma_A(x * y) \leq S(\gamma_A(x), \gamma_A(y))$ for all $x, y \in X$, and $\operatorname{Im}(\mu_A) \subseteq \Delta_T$ and $\operatorname{Im}(\gamma_A) \subseteq \Delta_S$. Hence $A = (\mu_A, \gamma_A)$ is an intuitionistic imaginable (T, S)-fuzzy subalgebra of X.

PROPOSITION 3.5. Let T be a t-norm and S be a s-norm on [0, 1]. If IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic imaginable (T, S)-fuzzy subalgebra of X, then we have

$$\mu_A(0) \ge \mu_A(x)$$
 and $\gamma_A(0) \le \gamma_A(x)$

for all $x \in X$.

Proof. For every $x \in X$, we have

$$\mu_A(0) = \mu_A(x * x) \ge T(\mu_A(x), \mu_A(x)) = \mu_A(x),$$

and

$$\gamma_A(0) = \gamma_A(x * x) \le S(\gamma_A(x), \gamma_A(x)) = \gamma_A(x).$$

This completes the proof.

PROPOSITION 3.6. Let T be a t-norm and S be a s-norm. If IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic imaginable (T, S)-fuzzy subalgebra of X, then the set

$$X_A = \{ x \in X \mid \mu_A(x) = \mu_A(0), \gamma_A(x) = \gamma_A(0) \}$$

is a subalgebra of BCK-algebra X.

Proof. Let T be a t-norm and S be a s-norm. Let $x, y \in X_A$. Then $\mu_A(x) = \mu_A(y) = \mu_A(0)$ and $\gamma_A(x) = \gamma_A(y) = \gamma_A(0)$. Since $A = (\mu_A, \gamma_A)$ is an intuitionistic imaginable (T, S)-fuzzy subalgebra of X, it follows that

$$\mu_A(x * y) \ge T(\mu_A(x), \mu_A(y)) = T(\mu_A(0), \mu_A(0)) = \mu_A(0),$$

$$\gamma_A(x * y) \le S(\gamma_A(x), \gamma_A(y)) = S(\gamma_A(0), \gamma_A(0)) = \gamma_A(0)$$

so that $\mu_A(x * y) = \mu_A(0)$ and $\gamma_A(x * y) = \gamma_A(0)$. Thus $x * y \in X_A$, and consequently X_A is a subalgebra of BCK-algebra X.

Let $A = (\mu_A, \gamma_A)$ be an IFS in X and let $\alpha \in [0, 1]$. Then the sets

$$U(\mu_A; \alpha) := \{ x \in X : \mu_A(x) \ge \alpha \}$$

and

$$L(\gamma_A; \alpha) := \{ x \in X : \gamma_A(x) \le \alpha \}$$

are called a μ -level α -cut and a γ -level α -cut of A, respectively.

THEOREM 3.7. Let T be a t-norm and S be a s-norm and let IFS $A = (\mu_A, \gamma_A)$ be an intuitionistic (T, S)-normed fuzzy subalgebra of X and $\alpha \in [0, 1]$. then we have

(i) if $\alpha = 1$, then the upper level set $U(\mu_A; \alpha)$ is either empty or a subalgebra of X.

(ii) if $\alpha = 0$, then the lower level set $L(\gamma_A; \alpha)$ is either empty or a subalgebra of X.

(iii) if $T = \min$, then the upper level set $U(\mu_A; \alpha)$ is either empty or subalgebra of X.

(iv) if $S = \max$, then the lower level set $L(\gamma_A; \alpha)$ is either empty or subalgebra of X.

Proof. (i) Suppose that $\alpha = 1$ and let $x, y \in U(\mu_A; \alpha)$. Then $\mu_A(x) \geq \alpha = 1$ and $\mu_A(y) \geq \alpha = 1$. It follows that $\mu_A(x * y) \geq T(\mu_A(x), \mu_A(y)) \geq T(1, 1) = 1$ so that $x * y \in U(\mu_A; \alpha)$. Hence $U(\mu_A; \alpha)$ is a subalgebra of X when $\alpha = 1$.

(ii) Suppose that $\alpha = 0$ and let $x, y \in L(\gamma_A; \alpha)$. Then $\gamma_A(x) \leq \alpha = 0$ and $\gamma_A(y) \leq \alpha = 0$. It follows that $\gamma_A(x * y) \leq S(\gamma_A(x), \gamma_A(y)) \leq S(0, 0) = 0$ so that $x * y \in L(\gamma_A; \alpha)$. Hence $L(\gamma_A; \alpha)$ is a subalgebra of X when $\alpha = 0$.

(iii) Assume that $T = \min$ and let $x, y \in U(\mu_A; \alpha)$. Then

 $\mu_A(x * y) \ge T(\mu_A(x), \mu_A(y)) = \min(\mu_A(x), \mu_A(y)) \ge \min(\alpha, \alpha) = \alpha$

for all $\alpha \in [0, 1]$. Hence $x * y \in U(\mu_A; \alpha)$ and so $U(\mu_A; \alpha)$ is a subalgebra of X.

(iv) Assume that $S = \max$ and let $x, y \in L(\gamma_A; \alpha)$. Then

$$\gamma_A(x * y) \le S(\gamma_A(x), \gamma_A(y)) = \max(\gamma_A(x), \gamma_A(y)) \le \max(\alpha, \alpha) = \alpha$$

for all $\alpha \in [0, 1]$. Hence $x * y \in L(\gamma_A; \alpha)$ and so $L(\gamma_A; \alpha)$ is a subalgebra of X.

If μ is a fuzzy set in X and θ is a mapping from X into itself, we define a mapping $\mu[\theta] : X \to [0, 1]$ by $\mu[\theta](x) = \mu(\theta(x))$ for all $x \in X$.

THEOREM 3.8. Let T be a t-norm and S be a s-norm. Let θ be an endomorphism of X. If $A = (\mu_A, \gamma_A)$ is an intuitionistic (T, S)-normed fuzzy subalgebra of X, then $B = (\mu_A[\theta], \gamma_A[\theta])$ is an intuitionistic (T, S)-normed fuzzy subalgebra of X.

Proof. For any $x, y \in X$, we have

$$\mu_A[\theta](x * y) = \mu_A(\theta(x * y)) = \mu_A(\theta(x) * \theta(y))$$

$$\geq T(\mu_A(\theta(x)), \mu_A(\theta(y))) = T(\mu_A[\theta](x), \mu_A[\theta](y)).$$

Similarly, we have for any $x, y \in X$, we have

$$\gamma_A[\theta](x * y) = \gamma_A(\theta(x * y)) = \gamma_A(\theta(x) * \theta(y))$$

$$\leq S(\gamma_A(\theta(x)), \gamma_A(\theta(y))) = S(\gamma_A[\theta](x), \gamma_A[\theta](y)).$$

This completes the proof.

THEOREM 3.9. Let T be a t-norm and S be a s-norm let $A = (\mu_A, \gamma_A)$ be an IFS in X such that the non-empty sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \alpha)$ are subalgebras of X for all $\alpha \in [0, 1]$. Then $A = (\mu_A, \gamma_A)$ is an intuitioinistic (T, S)-normed fuzzy subalgebra of X.

Proof. Suppose that there exists $x_0, y_0 \in X$ such that

$$\mu_A(x_0 * y_0) < T(\mu_A(x_0), \mu_A(y_0)).$$

Taking $\alpha_0 := \frac{1}{2}(\mu_A(x_0 * y_0) + T(\mu_A(x_0), \mu_A(y_0))),$ then
 $\min(\mu_A(x_0), \mu_A(y_0)) \ge T(\mu_A(x_0), \mu_A(y_0))$
 $\ge \alpha_0 > \mu_A(x_0 * y_0).$

It follows that $x_0, y_0 \in U(\mu_A; \alpha_0)$ and $x_0 * y_0 \notin U(\mu_A; \alpha_0)$. Hence μ_A satisfies the inequality $\mu_A(x * y) \geq T(\mu_A(x), \mu_A(y))$ for all $x, y \in X$. Similarly, suppose that there exists $x_0, y_0 \in X$ such that

$$\gamma_A(x_0 * y_0) > S(\gamma_A(x_0), \gamma_A(y_0)).$$

Taking $\beta_0 := \frac{1}{2}(\gamma_A(x_0 * y_0) + S(\gamma_A(x_0), \gamma_A(y_0))))$, then

$$\max(\gamma_A(x_0), \gamma_A(y_0)) \le S(\gamma_A(x_0), \gamma_A(y_0)) \le \beta_0 < \gamma_A(x_0 * y_0).$$

It follows that $x_0, y_0 \in L(\gamma_A; \beta_0)$ and $x_0 * y_0 \notin L(\gamma_A; \beta_0)$. This is a contradiction and hence γ_A satisfies the inequality $\gamma_A(x * y) \leq S(\gamma_A(x), \gamma_A(y))$ for all $x, y \in X$.

References

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
- [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (No.1)(1986), 87-96.
- [3] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137-142.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- [6] K. Iséki, On BCI-algebras, Seminar Notes (presently Kobe J. Math) 8 (1980), 125-130.
- [7] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
- [8] Y. H. Yon and K. H. Kim, On intuitionistic fuzzy filters and ideals of lattices, Far East J Math. Sci.(FJMS) 1 (3), (1999), 429-442.
- [9] Y. Yu, J. N. Mordeson and S. C. Cheng, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994).
- [10] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

*

Department of Mathematics, Chungju National University Chungju 380-702, Republic of Korea *E-mail*: ghkim@cjnu.ac.kr