JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 3, September 2007

JORDAN-VON NEUMANN TYPE FUNCTIONAL **INEQUALITIES**

Young Hak Kwon *, Ho Min Lee **, Jeong Soo Sim***, Jeha YANG****, AND CHOONKIL PARK****

ABSTRACT. It is shown that $f : \mathbb{R} \to \mathbb{R}$ satisfies the following functional inequalities

- (0.1) $|f(x) + f(y)| \leq |f(x+y)|,$
- (0.2)
- $$\begin{split} |f(x) + f(y)| &\leq |2f(\frac{x+y}{2})|, \\ |f(x) + f(y) 2f(\frac{x-y}{2})| &\leq |2f(\frac{x+y}{2})|, \end{split}$$
 (0.3)

respectively, then the function $f : \mathbb{R} \to \mathbb{R}$ satisfies the Cauchy functional equation, the Jensen functional equation and the Jensen quadratic functional equation, respectively.

1. Introduction and preliminaries

Gilányi [3] showed that if f satisfies the functional inequality

(1.1)
$$||2f(x) + 2f(y) - f(x - y)|| \le ||f(x + y)||$$

then f satisfies the quadratic functional equation

$$2f(x) + 2f(y) = f(x+y) + f(x-y).$$

See also [6]. Gilányi [4] and Fechner [2] proved the generalized Hyers-Ulam stability of the functional inequality (1.1). Park, Cho and Han [5] investigated the Jordan–von Neumann type Cauchy–Jensen additive mappings and prove their stability, and Cho and Kim [1] proved the generalized Hyers–Ulam stability of the Jordan–von Neumann type Cauchy–Jensen additive mappings.

Received July 16, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B62, 39B72.

Key words and phrases: Jordan-von Neumann functional equation, functional inequality.

This was supported by the R & E program of KOSEF in 2007.

In Section 2, we prove that if $f : \mathbb{R} \to \mathbb{R}$ satisfies the additive functional inequalities (0.1) and (0.2), respectively, then the function f is Cauchy additive and Jensen additive, respectively, and that if $f : \mathbb{R} \to \mathbb{R}$ satisfies the quadratic functional inequality (0.3), then the function f is Jensen quadratic.

Throughout this paper, let \mathbb{R} denote the field of real numbers.

2. Jordan–von Neumann type additive functional inequalities

In this section, we investigate the Cauchy additive inequality and the Jensen additive inequality.

THEOREM 2.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that

(2.1)
$$|f(x) + f(y)| \le |f(x+y)|$$

for all $x, y \in \mathbb{R}$. Then f satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

Proof. Letting x = y = 0 in (2.1), we get

 $|2f(0)| \le |f(0)|.$

So f(0) = 0. Letting y = -x in (2.1), we get

$$|f(x) + f(-x)| \le |f(0)| = 0$$

for all $x \in \mathbb{R}$. Hence f(-x) = -f(x) for all $x \in \mathbb{R}$. First of all, we show that |f(x) + f(y)| = |f(x+y)| for all $x, y \in \mathbb{R}$. We divide into four cases.

(i) Case 1. $f(x) \ge 0$ and $f(y) \ge 0$.

It follows from (2.1) that

$$f(x) + f(y) \le |f(x+y)|.$$

Replacing x by x + y and y by -y in (2.1), we get

$$|f(x+y) + f(-y)| \le |f(x)| = f(x).$$

So

$$|f(y)| + |f(x+y) + f(-y)| \le f(x) + |f(y)| = f(x) + f(y)$$

By the triangle inequality,

$$\begin{aligned} |f(y)| + |f(x+y) + f(-y)| &\geq |f(y) + (f(x+y) + f(-y))| \\ &= |f(x+y) + f(y) + f(-y)| = |f(x+y)|. \end{aligned}$$

Thus

$$|f(x+y)| \le f(x) + f(y).$$

 So

$$|f(x+y)| = f(x) + f(y).$$

(ii) Case 2. f(x) < 0 and f(y) < 0. Replacing x by -x and y by -y, we

eplacing x by
$$-x$$
 and y by $-y$, we get

$$|f(-x) + f(-y)| = f(-x - y).$$

By (i),

$$|-f(x) - f(y)| = |-f(x+y)|.$$

 \mathbf{So}

$$|f(x) + f(y)| = |f(x + y)|.$$

(iii) Case 3. $f(x) \ge 0, f(y) \le 0$ and $f(x+y) \ge 0$. It follows from (2.1) that

$$f(x) + f(y) \le |f(x+y)|.$$

Replacing x by x + y and y by -y in (2.1), we get $|f(x+y) + f(-y)| \le |f(x)|.$

 So

$$|f(x+y) - f(y)| \le f(x).$$

For the case $f(x+y) \ge 0$,

$$f(x+y) - f(y) \le f(x).$$

Thus

$$f(x+y) \le f(x) + f(y).$$

Since

$$f(x) + f(y) \le f(x+y),$$

 $f(x) + f(y) = f(x+y).$

 So

$$|f(x) + f(y)| = |f(x + y)|$$

For the case f(x+y) < 0, replacing x by x+y and y by -x in (2.1),

$$|f(x+y) - f(x)| \le |f(y)|.$$

Since

$$f(x) - f(x+y) \le -f(y), 0 \le f(x) + f(y) \le f(x+y) < 0,$$

which is a contradiction.

Similarly, for the case $f(x) \leq 0$, $f(y) \geq 0$, $f(x) + f(y) \geq 0$, one can show that

$$|f(x) + f(y)| = |f(x + y)|.$$

(iv) Case 4. $f(x) \ge 0, f(y) \le 0$ and f(x+y) < 0. Replacing x by -x and y by -y in (2.1), we get

$$|f(-x) + f(-y)| = |f(-x - y)|.$$

By (iii),

$$|-f(x) - f(y)| = |-f(x+y)|.$$

 So

$$|f(x) + f(y)| = |f(x + y)|.$$

Similarly, for the case $f(x) \leq 0$, $f(y) \geq 0$, f(x) + f(y) < 0, one can show that

$$|f(x) - f(y)| = |f(x + y)|.$$

Thus

$$|f(x) + f(y)| = |f(x + y)|$$

for all $x, y \in \mathbb{R}$.

Next, we show that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

Since |f(x+y)| = |f(x)+f(y)|, f(x+y) = f(x)+f(y) or f(x+y) = -f(x) - f(y).

Assume that there are $x, y \in \mathbb{R}$ such that f(x+y) = -f(x) - f(y) with $f(x+y) \neq 0$.

We divide into four cases.

(i) Case 1. $f(x) \ge 0$ and $f(y) \ge 0$.

Since $f(x+y) = -f(x) - f(y) \le 0$, f(x+y) < 0. Replacing x and y by x + y and -y in (2.1), respectively, we get

$$|f(x+y) - f(y)| = |f(x+y) + f(-y)| = |f(x)| = f(x).$$

Thus f(y)-f(x+y) = f(x). Since f(y)-f(x) = f(x+y) = -f(x)-f(y), f(y) = 0.

Similarly, we can show that f(x) = 0. So f(x+y) = -f(x) - f(y) = 0, which is a contradiction.

(ii) Case 2. $f(x) \leq 0$ and $f(y) \leq 0$.

Note that f((-x) + (-y)) = -f(-x) - f(-y), $f(-x) = -f(x) \ge 0$ and $f(-y) = -f(y) \ge 0$. By (i), we can get f(x+y) = 0, which is a contradiction.

(iii) Case 3. $f(x) \ge 0, f(y) \le 0$ and $f(x+y) \ge 0$.

Since $f(x+y) = -f(x) - f(y) \le 0$, f(x+y) < 0. Replacing x and y by x+y and -x in (2.1), respectively, we get |f(x+y)+f(-x)| = |f(y)|.

Thus f(x) - f(x+y) = -f(y). So f(x+y) = f(x) + f(y) = -f(x+y), which is a contradiction.

(iv) Case 4. $f(x) \ge 0, f(y) \le 0$ and $f(x+y) \le 0$.

Since $f(x+y) = -f(x) - f(y) \ge 0$, f(x+y) < 0. Replacing x and y by x+y and -y in (2.1), respectively, we get |f(x+y)+f(-y)| = |f(x)|. Thus f(x+y) - f(y) = f(x). So f(x+y) = f(x) + f(y) = -f(x+y), which is a contradiction.

Therefore,

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, as desired.

COROLLARY 2.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying f(2x) = 2f(x) such that

$$|f(x) + f(y)| \le |2f(\frac{x+y}{2})|$$

for all $x, y \in \mathbb{R}$. Then f satisfies $2f(\frac{x+y}{2}) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$.

Proof. Since f(2x) = 2f(x), the inequality

$$|f(x) + f(y)| \le |2f(\frac{x+y}{2})|$$

is equivalent to the inequality

$$|f(x) + f(y)| \le |2f(\frac{x+y}{2})| = |f(x+y)|$$

for all $x, y \in \mathbb{R}$. By Theorem 2.1,

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, and

$$2f(\frac{x+y}{2}) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, as desired.

3. Jordan–von Neumann type quadratic functional inequalities

In this section, we investigate the Jensen quadratic inequality.

THEOREM 3.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying f(2x) = 4f(x) such that

(3.1)
$$|f(x) + f(y) - 2f(\frac{x-y}{2})| \le |2f(\frac{x+y}{2})|$$

for all $x, y \in \mathbb{R}$. Then f satisfies $2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$.

Proof. Putting x = 0 in f(2x) = 4f(x), we get f(0) = 4f(0). So f(0) = 0.

Letting y = -x in (3.1), we get

$$|f(x) + f(-x) - 2f(x)| \le |f(0)| = 0$$

for all $x \in \mathbb{R}$. So

(3.2) f(-x) = f(x)

for all $x \in \mathbb{R}$.

It follows from (3.1) that

$$(f(x) + f(y) - 2f(\frac{x-y}{2}))^2 \le 4f(\frac{x+y}{2})^2$$

for all $x, y \in \mathbb{R}$. Hence

(3.3)
$$(f(x) + f(y))^2 + 4f(\frac{x-y}{2})^2 - 4(f(x) + f(y))f(\frac{x-y}{2}) \le 4f(\frac{x+y}{2})^2$$

for all $x, y \in \mathbb{R}$.

Replacing y by -y in (3.3), we get

$$(f(x) + f(-y))^2 + 4f(\frac{x+y}{2})^2 - 4(f(x) + f(-y))f(\frac{x+y}{2}) \le 4f(\frac{x-y}{2})^2$$
for all $x, y \in \mathbb{R}$. By (3.2),

(3.4)
$$(f(x) + f(y))^2 + 4f(\frac{x+y}{2})^2 - 4(f(x)) + f(y))f(\frac{x+y}{2}) \le 4f(\frac{x-y}{2})^2$$

for all $x, y \in \mathbb{R}$.

It follows from (3.3) and (3.4) that

$$2(f(x) + f(y))^2 - 4(f(x) + f(y))(f(\frac{x-y}{2}) + f(\frac{x+y}{2})) \le 0$$

for all $x, y \in \mathbb{R}$. So

$$(-2f(x) - 2f(y))(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) - f(x) - f(y)) \le 0$$

for all $x, y \in \mathbb{R}$. Thus

 $(3.5)(-f(x) - f(y))(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) - f(x) - f(y)) \le 0$ for all $x, y \in \mathbb{R}$.

Replacing x by $\frac{-x-y}{2}$ and y by $\frac{-x+y}{2}$ in (3.3), we get

$$\begin{array}{rcrc} (f(\frac{-x-y}{2}) &+& f(\frac{-x+y}{2}))^2 + 4f(\frac{-y}{2})^2 - 4(f(\frac{-x-y}{2}) \\ &+& f(\frac{-x+y}{2}))f(\frac{-y}{2}) \leq 4f(\frac{-x}{2})^2 \end{array}$$

for all $x, y \in \mathbb{R}$. Since f(-x) = f(x),

(3.6)
$$(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))^2 + 4f(\frac{y}{2})^2 - 4(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))f(\frac{y}{2}) \le 4f(\frac{x}{2})^2$$

for all $x, y \in \mathbb{R}$. Replacing x by $\frac{-x-y}{2}$ and y by $\frac{x-y}{2}$ in (3.3), we get

$$\begin{array}{rcrcrc} (f(\frac{-x-y}{2}) & + & f(\frac{x-y}{2}))^2 + 4f(\frac{-x}{2})^2 - 4(f(\frac{-x-y}{2})) \\ & + & f(\frac{x-y}{2}))f(\frac{-x}{2}) \leq 4f(\frac{-y}{2})^2 \end{array}$$

for all $x, y \in \mathbb{R}$. Since f(-x) = f(x),

(3.7)
$$(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))^2 + 4f(\frac{x}{2})^2 -4(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))f(\frac{x}{2}) \le 4f(\frac{y}{2})^2$$

for all $x, y \in \mathbb{R}$.

It follows from (3.6) and (3.7) that

$$2(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))^2 - 4(f(\frac{x+y}{2}) + f(\frac{x-y}{2}))(f(\frac{x}{2}) + f(\frac{y}{2})) \le 0$$

for all $x, y \in \mathbb{R}$. So
$$(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}))(f(\frac{x+y}{2}) + f(\frac{x-y}{2}) - 2f(\frac{x}{2}) - 2f(\frac{y}{2})) \le 0$$

for all $x, y \in \mathbb{R}$. Since $f(\frac{y}{2}) = \frac{1}{4}f(y)$,
$$(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}))(2f(\frac{x+y}{2}) - 2f(\frac{x+y}{2})) \le 0$$

(3.8)
$$(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}))(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) - f(x) - f(y)) \le 0$$

for all $x, y \in \mathbb{R}$.

It follows from (3.5) and (3.8) that

$$(2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) - f(x) - f(y))^2 \le 0$$

for all $x, y \in \mathbb{R}$.

Therefore,

$$2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) - f(x) - f(y) = 0$$

for all $x, y \in \mathbb{R}$. So

$$2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$.

REMARK 3.1. Under the assumption f(2x) = 4f(x) for all $x \in \mathbb{R}$, the inequality (3.1) is equivalent to the inequality

(3.9)
$$|2f(x) + 2f(y) - f(x-y)| \le |f(x+y)|$$

for all $x, y \in \mathbb{R}$. Gilányi [3] proved that if $f : \mathbb{R} \to \mathbb{R}$ satisfies the inequality (3.9) then

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

holds for all $x, y \in \mathbb{R}$. Since $f(\frac{x}{2}) = \frac{1}{4}f(x)$ for all $x \in \mathbb{R}$,

$$2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) = f(x) + f(y)$$

holds for all $x, y \in \mathbb{R}$.

References

- Y.-S. Cho and H-M. Kim, Stability of functional inequalities with Cauchy– Jensen additive mappings, Abstr. Appl. Math. 2007 (2007), Art. ID 89180, 13 pages.
- [2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149–161.
- [3] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303–309.
- [4] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707– 710.
- [5] C. Park, Y.-S. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann-type additive functional equations, Abstr. Appl. Math. 2006 (2006), Art. ID 41820, 13 pages.
- [6] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200.

*

Seoul Science High School Seoul, 110-530, Republic of Korea *E-mail*: sshs1991@hanmail.net

**

Seoul Science High School Seoul, 110-530, Republic of Korea *E-mail*: cross_dragon@naver.com

Seoul Science High School Seoul, 110-530, Republic of Korea *E-mail*: digivice1230@hanmail.net

Seoul Science High School Seoul, 110-530, Republic of Korea *E-mail*: imjeha@hanmail.net

Department of Mathematics HanYang University Seoul, 133–791, Republic of Korea *E-mail*: baak@@hanyang.ac.kr