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ABSTRACT. It is shown that f : R — R satisfies the following func-
tional inequalities

(0.1 @+ < 1@+l
(0:2) @)+ 1) < RIS
03) @+ -20CF01 < rEEY)

respectively, then the function f : R — R satisfies the Cauchy
functional equation, the Jensen functional equation and the Jensen
quadratic functional equation, respectively.

1. Introduction and preliminaries

Gildnyi [3] showed that if f satisfies the functional inequality
(1.1) 12f(z) +2f(y) = fla =yl < [ flz+y)]

then f satisfies the quadratic functional equation

2f(x) +2f(y) = f(z +y) + f(z —y).

See also [6]. Gilanyi [4] and Fechner [2] proved the generalized Hyers—
Ulam stability of the functional inequality (1.1). Park, Cho and Han
[5] investigated the Jordan—von Neumann type Cauchy—Jensen addi-
tive mappings and prove their stability, and Cho and Kim [1] proved
the generalized Hyers—Ulam stability of the Jordan—von Neumann type
Cauchy—Jensen additive mappings.
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In Section 2, we prove that if f : R — R satisfies the additive func-
tional inequalities (0.1) and (0.2), respectively, then the function f is
Cauchy additive and Jensen additive, respectively, and that if f : R — R
satisfies the quadratic functional inequality (0.3), then the function f is
Jensen quadratic.

Throughout this paper, let R denote the field of real numbers.

2. Jordan—von Neumann type additive functional inequali-
ties

In this section, we investigate the Cauchy additive inequality and the
Jensen additive inequality.

THEOREM 2.1. Let f: R — R be a function such that

(2.1) [f (@) + fy)l < [f(z+y)|
for all z,y € R. Then f satisfies f(x +y) = f(x) + f(y) for all x,y € R.

Proof. Letting z =y =0 in (2.1), we get
2£(0)] < |£(0)].
So f(0) = 0. Letting y = —x in (2.1), we get
[f (@) + f(==)| < |F(0)] =0

for all z € R. Hence f(—x) = —f(x) for all z € R.

First of all, we show that |f(x) + f(y)| = |f(z +y)| for all z,y € R.

We divide into four cases.

(i) Case 1. f(x) >0 and f(y) > 0.

It follows from (2.1) that

f@)+ fly) < [f(@+y)l

Replacing = by  + y and y by —y in (2.1), we get
|fl@+y)+ f(=y)| < [f(2)] = f(2).
So
W+ 1f(@+y) + f(=y)l < o)+ F)] = (@) + f(y).
By the triangle inequality,

LfWI+1fx+y)+ (=) = [f)+flz+y)+ f(-y)l
= |[flz+y)+ fly) + ()l =fz+y)|
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Thus

[f(z+y)| < flz) + fy)
So
[f@+y)l=f@)+ fy)
(ii) Case 2. f(z) <0 and f(y) <O.
Replacing x by —x and y by —y, we get
[f (=) + f(=y)l = f(=z —y).
By (i),
| = @) = fW)l=]-fl@+y)l
So
[f (@) + F(y)l = |f(z+y)l.
) >0, f(y) <0 and f(z+y) > 0.
2.1) that

f@)+ fly) < |f(z+y)l
Replacing = by x + y and y by —y in (2.1), we get

[f(z+y) + f(=y)| < |f(2)].

(iii) Case 3. f(aé

It follows from

So
[f(x+y) = fy)l < fl=).
For the case f(z +y) >0,

flz+y) = fly) < f(x).

Thus

flx+y) < flz)+ f(y)
Since

f(@)+ fly) < flz+v),

f@)+ fly) = flz+y)
So

(@) + F)] = |f (@ + )l
For the case f(x +y) < 0, replacing « by x +y and y by —z in (2.1),
[f(@+y) = f@)] < |fy)l.
Since
f@) = fle+y) < —fy),
0< f(z)+ fly) < fl@z+y) <0,
which is a contradiction.
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Similarly, for the case f(z) <0, f(y) >0, f(z) + f(y) > 0, one can
show that
[f (@) + ()l = |f(z+y)l.
(iv) Case 4. f(x) >0, f(y) <0 and f(z+y) <O0.
Replacing z by —x and y by —y in (2.1), we get

[f(=2) + f(=y)| = |f (=2 = y)|.
By (iii),

So

Similarly, for the case f(z) <0, f(y) >0, f(z) + f(y) < 0, one can
show that
[f(@) = f)l = [f(z+y)l-
Thus

[f (@) + F()l = |f(z +y)]

for all z,y € R.

Next, we show that f(x +y) = f(z) + f(y) for all z,y € R.

Since |f(z +y)| = [f(z) + f(W)], flx+y) = f(x)+ f(y) or f(z+y) =
~f(@) - F ).

Assume that there are z,y € R such that f(x +y) = —f(x) — f(y)
with f(x +y) #0.

We divide into four cases.

(i) Case 1. f(z) > 0 and f(y) > 0.

Since f(z+y) = —f(z) — f(y) <0, f(x +y) < 0. Replacing x and y
by z +y and —y in (2.1), respectively, we get

[f(@+y) = fWl = [f@+y)+ F(=y)l = [f(2)] = f(2).

?ém;s fy)—f(z+y) = f(x). Since f(y)—f(z) = flz+y) = —f(2)—f(y),
y) =0.

Similarly, we can show that f(x) = 0. So f(z+y) = —f(x)—f(y) =0,
which is a contradiction.

(ii) Case 2. f(z) <0 and f(y) <O0.

Note that £((—z) + (~y)) = —f(—a) — f(—y), f(—z) = —f(z) > 0
and f(—y) = —f(y) > 0. By (i), we can get f(z +y) = 0, which is a
contradiction.

(iii) Case 3. f(x) >0, f(y) <0 and f(z+1y) > 0.

Since f(z+y) = —f(z) — f(y) <0, f(x+y) < 0. Replacing x and y
by z+y and —z in (2.1), respectively, we get | f(z+y)+ f(—z)| = | f(y)].
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Thus f(z) — f(z+y) = —f(y). So f(z+y) = f(2) + f(y) = —f(z+y),
which is a contradiction.

(iv) Case 4. f(x) >0, f(y) <0 and f(z+y) <O0.

Since f(z+y) = —f(z) — f(y) >0, f(x +y) < 0. Replacing x and y
by z+y and —y in (2.1), respectively, we get | f(z+y)+ f(—y)| = | f(x)].
Thus f(z +5) — f(5) = (). So f(z+y) = f(z) + f(5) = — @+ )

which is a contradiction.
Therefore,

fla+y)=f@)+ fy)
for all z,y € R, as desired. O

COROLLARY 2.2. Let f : R — R be a function satisfying f(2x) =
2f(x) such that

@)+ 1)l < 272
for all x,y € R. Then f satisfies 2f(“72ﬁ) = f(z) + f(y) for all z,y € R.
Proof. Since f(2z) = 2f(z), the inequality
@)+ ) < 127 (2
is equivalent to the inequality
[f (@) + fy)| < |2/(

for all z,y € R. By Theorem 2.1,
fl@+y) = flx)+ fy)

)|

93+y

) =11z +y)l

for all z,y € R, and

212 Y) = f(@) + ()

for all z,y € R, as desired. ]

3. Jordan—von Neumann type quadratic functional inequal-
ities

In this section, we investigate the Jensen quadratic inequality.

THEOREM 3.1. Let f : R — R be a function satisfying f(2z) = 4f(x)
such that

(3.1) 1)+ 1) - 28 ()] < 2r(

)|
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for all z,y € R. Then f satisfies 2f(*54) + 2f(%5%) = f(z) + f(y) for
all x,y € R.
Proof. Putting x = 0 in f(2z) = 4f(x), we get f(0) = 4f(0). So
f(0)=0.
Letting y = —x in (3.1), we get
[f (@) + f(=z) = 2f(2)| < [f(0)] =
for all z € R. So

(3.2) f(=z) = f(x)
for all z € R.
It follows from (3.1) that
(F@)+ f) - 20 (o )? < ap(FE)?

for all z,y € R. Hence

(F(2) + F()* + 4F () = 4(f (@)

(3.3) . N
IS < 4t
for all z,y € R.
Replacing y by —y in (3.3), we get
(@) + F=9)? + AF 2P a(f (@) + F-u) fY) < ap (Y2
for all z,y € R. By (3.2),
(F@) + F)? + 4f ()2 - ()
(3-4) x+y T —y
NI <4y
for all z,y € R.
It follows from (3.3) and (3.4) that
2 (@) + F)? - 4@ + F) (D) + FE ) <0

for all z,y € R. So

(—2f(x) — 2/ () 2F Yy 22 52) = @) = f(y) <0
for all z,y € R. Thus

(35X (x) = f(¥))(2/(
for all z,y € R.

r+y

)+ 20 (55 — f@) — F) <0
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Replacing z by =5 and y by =5 in (3.3), we get
(F(—52) + I
+ (GG S af(5)
for all z,y € R. Since f(—z) = f(:z:),
GO + 1S+ 45 - a5
x

2
+f(* ; NG <45

I ap () - ar ()

—x+y

r+y

(3.6)

for all z,y € R.
Replacing = by =5 and y by %5¥ in (3.3), we get

(F(=5) + [0 +4f<‘7”“°>2 —4(f(—5)
+ FEGII ) <45
for all z,y € R. Since f(—z) = f(x),

275

. (12 +f(x;y))2 +4f(5)?
| A + 1) < 4rdy?
for all z,y € R.
It follows from (3.6) and (3.7) that
2 (50 + 1) -4 + DG + 1) <0
for all x,y € R. So
) + oD + 1 — 20 (5) - 2r(2) <0

2

for all z,y € R. Slnce f4) =31y,
)+ ert i)
(3.8) .
+2( )—f(x)—f(y)) <0

for all z,y € R.
It follows from (3.5) and (3.8) that

) + 20 - 1) - fw)P <0
for all z,y € R.
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Therefore,
205+ 20 () - fl@) - () =0
for all 7,y € R. So
212 + 24 = fla) + £(w)
for all z,y € R. O

REMARK 3.1. Under the assumption f(2z) = 4f(z) for all z € R,
the inequality (3.1) is equivalent to the inequality

(3.9) 2f(z) +2f(y) = flz =) < [f(z +y)|

for all z,y € R. Gildnyi [3] proved that if f : R — R satisfies the
inequality (3.9) then

fl@+y)+ fle—y) =2f(x) +2f(y)
holds for all z,y € R. Since f(%) = 1f(z) for all 2 € R,

r+y
2

)+ 2f () = f@) + f(y)

2f( ;

holds for all z,y € R.
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