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Abstract. It is shown that f : R→ R satisfies the following func-
tional inequalities

|f(x) + f(y)| ≤ |f(x + y)|,(0.1)

|f(x) + f(y)| ≤ |2f(
x + y

2
)|,(0.2)

|f(x) + f(y)− 2f(
x− y

2
)| ≤ |2f(

x + y

2
)|,(0.3)

respectively, then the function f : R → R satisfies the Cauchy
functional equation, the Jensen functional equation and the Jensen
quadratic functional equation, respectively.

1. Introduction and preliminaries

Gilányi [3] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x + y)‖(1.1)

then f satisfies the quadratic functional equation

2f(x) + 2f(y) = f(x + y) + f(x− y).

See also [6]. Gilányi [4] and Fechner [2] proved the generalized Hyers–
Ulam stability of the functional inequality (1.1). Park, Cho and Han
[5] investigated the Jordan–von Neumann type Cauchy–Jensen addi-
tive mappings and prove their stability, and Cho and Kim [1] proved
the generalized Hyers–Ulam stability of the Jordan–von Neumann type
Cauchy–Jensen additive mappings.
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In Section 2, we prove that if f : R → R satisfies the additive func-
tional inequalities (0.1) and (0.2), respectively, then the function f is
Cauchy additive and Jensen additive, respectively, and that if f : R→ R
satisfies the quadratic functional inequality (0.3), then the function f is
Jensen quadratic.

Throughout this paper, let R denote the field of real numbers.

2. Jordan–von Neumann type additive functional inequali-
ties

In this section, we investigate the Cauchy additive inequality and the
Jensen additive inequality.

Theorem 2.1. Let f : R→ R be a function such that

|f(x) + f(y)| ≤ |f(x + y)|(2.1)

for all x, y ∈ R. Then f satisfies f(x + y) = f(x) + f(y) for all x, y ∈ R.

Proof. Letting x = y = 0 in (2.1), we get

|2f(0)| ≤ |f(0)|.
So f(0) = 0. Letting y = −x in (2.1), we get

|f(x) + f(−x)| ≤ |f(0)| = 0

for all x ∈ R. Hence f(−x) = −f(x) for all x ∈ R.
First of all, we show that |f(x) + f(y)| = |f(x + y)| for all x, y ∈ R.
We divide into four cases.
(i) Case 1. f(x) ≥ 0 and f(y) ≥ 0.
It follows from (2.1) that

f(x) + f(y) ≤ |f(x + y)|.
Replacing x by x + y and y by −y in (2.1), we get

|f(x + y) + f(−y)| ≤ |f(x)| = f(x).

So

|f(y)|+ |f(x + y) + f(−y)| ≤ f(x) + |f(y)| = f(x) + f(y).

By the triangle inequality,

|f(y)|+ |f(x + y) + f(−y)| ≥ |f(y) + (f(x + y) + f(−y))|
= |f(x + y) + f(y) + f(−y)| = |f(x + y)|.
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Thus

|f(x + y)| ≤ f(x) + f(y).

So
|f(x + y)| = f(x) + f(y).

(ii) Case 2. f(x) < 0 and f(y) < 0.
Replacing x by −x and y by −y, we get

|f(−x) + f(−y)| = f(−x− y).

By (i),
| − f(x)− f(y)| = | − f(x + y)|.

So
|f(x) + f(y)| = |f(x + y)|.

(iii) Case 3. f(x) ≥ 0, f(y) ≤ 0 and f(x + y) ≥ 0.
It follows from (2.1) that

f(x) + f(y) ≤ |f(x + y)|.
Replacing x by x + y and y by −y in (2.1), we get

|f(x + y) + f(−y)| ≤ |f(x)|.
So

|f(x + y)− f(y)| ≤ f(x).
For the case f(x + y) ≥ 0,

f(x + y)− f(y) ≤ f(x).

Thus
f(x + y) ≤ f(x) + f(y).

Since
f(x) + f(y) ≤ f(x + y),
f(x) + f(y) = f(x + y).

So
|f(x) + f(y)| = |f(x + y)|.

For the case f(x + y) < 0, replacing x by x + y and y by −x in (2.1),

|f(x + y)− f(x)| ≤ |f(y)|.
Since

f(x)− f(x + y) ≤ −f(y),
0 ≤ f(x) + f(y) ≤ f(x + y) < 0,

which is a contradiction.
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Similarly, for the case f(x) ≤ 0, f(y) ≥ 0, f(x) + f(y) ≥ 0, one can
show that

|f(x) + f(y)| = |f(x + y)|.
(iv) Case 4. f(x) ≥ 0, f(y) ≤ 0 and f(x + y) < 0.
Replacing x by −x and y by −y in (2.1), we get

|f(−x) + f(−y)| = |f(−x− y)|.
By (iii),

| − f(x)− f(y)| = | − f(x + y)|.
So

|f(x) + f(y)| = |f(x + y)|.
Similarly, for the case f(x) ≤ 0, f(y) ≥ 0, f(x) + f(y) < 0, one can

show that
|f(x)− f(y)| = |f(x + y)|.

Thus
|f(x) + f(y)| = |f(x + y)|

for all x, y ∈ R.
Next, we show that f(x + y) = f(x) + f(y) for all x, y ∈ R.
Since |f(x+y)| = |f(x)+f(y)|, f(x+y) = f(x)+f(y) or f(x+y) =

−f(x)− f(y).
Assume that there are x, y ∈ R such that f(x + y) = −f(x) − f(y)

with f(x + y) 6= 0.
We divide into four cases.
(i) Case 1. f(x) ≥ 0 and f(y) ≥ 0.
Since f(x + y) = −f(x)− f(y) ≤ 0, f(x + y) < 0. Replacing x and y

by x + y and −y in (2.1), respectively, we get

|f(x + y)− f(y)| = |f(x + y) + f(−y)| = |f(x)| = f(x).

Thus f(y)−f(x+y) = f(x). Since f(y)−f(x) = f(x+y) = −f(x)−f(y),
f(y) = 0.

Similarly, we can show that f(x) = 0. So f(x+y) = −f(x)−f(y) = 0,
which is a contradiction.

(ii) Case 2. f(x) ≤ 0 and f(y) ≤ 0.
Note that f((−x) + (−y)) = −f(−x) − f(−y), f(−x) = −f(x) ≥ 0

and f(−y) = −f(y) ≥ 0. By (i), we can get f(x + y) = 0, which is a
contradiction.

(iii) Case 3. f(x) ≥ 0, f(y) ≤ 0 and f(x + y) ≥ 0.
Since f(x + y) = −f(x)− f(y) ≤ 0, f(x + y) < 0. Replacing x and y

by x+y and −x in (2.1), respectively, we get |f(x+y)+f(−x)| = |f(y)|.
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Thus f(x)− f(x + y) = −f(y). So f(x + y) = f(x) + f(y) = −f(x + y),
which is a contradiction.

(iv) Case 4. f(x) ≥ 0, f(y) ≤ 0 and f(x + y) ≤ 0.
Since f(x + y) = −f(x)− f(y) ≥ 0, f(x + y) < 0. Replacing x and y

by x+y and −y in (2.1), respectively, we get |f(x+y)+f(−y)| = |f(x)|.
Thus f(x + y)− f(y) = f(x). So f(x + y) = f(x) + f(y) = −f(x + y),
which is a contradiction.

Therefore,
f(x + y) = f(x) + f(y)

for all x, y ∈ R, as desired.

Corollary 2.2. Let f : R → R be a function satisfying f(2x) =
2f(x) such that

|f(x) + f(y)| ≤ |2f(
x + y

2
)|

for all x, y ∈ R. Then f satisfies 2f(x+y
2 ) = f(x) + f(y) for all x, y ∈ R.

Proof. Since f(2x) = 2f(x), the inequality

|f(x) + f(y)| ≤ |2f(
x + y

2
)|

is equivalent to the inequality

|f(x) + f(y)| ≤ |2f(
x + y

2
)| = |f(x + y)|

for all x, y ∈ R. By Theorem 2.1,

f(x + y) = f(x) + f(y)

for all x, y ∈ R, and

2f(
x + y

2
) = f(x) + f(y)

for all x, y ∈ R, as desired.

3. Jordan–von Neumann type quadratic functional inequal-
ities

In this section, we investigate the Jensen quadratic inequality.

Theorem 3.1. Let f : R→ R be a function satisfying f(2x) = 4f(x)
such that

|f(x) + f(y)− 2f(
x− y

2
)| ≤ |2f(

x + y

2
)|(3.1)



274 Y. Kwon, H. Lee, J. Sim, J. Yang, and C. Park

for all x, y ∈ R. Then f satisfies 2f(x+y
2 ) + 2f(x−y

2 ) = f(x) + f(y) for
all x, y ∈ R.

Proof. Putting x = 0 in f(2x) = 4f(x), we get f(0) = 4f(0). So
f(0) = 0.

Letting y = −x in (3.1), we get

|f(x) + f(−x)− 2f(x)| ≤ |f(0)| = 0

for all x ∈ R. So

f(−x) = f(x)(3.2)

for all x ∈ R.
It follows from (3.1) that

(f(x) + f(y)− 2f(
x− y

2
))2 ≤ 4f(

x + y

2
)2

for all x, y ∈ R. Hence

(f(x) + f(y))2 + 4f(
x− y

2
)2 − 4(f(x)

+f(y))f(
x− y

2
) ≤ 4f(

x + y

2
)2

(3.3)

for all x, y ∈ R.
Replacing y by −y in (3.3), we get

(f(x) + f(−y))2 + 4f(
x + y

2
)2 − 4(f(x) + f(−y))f(

x + y

2
) ≤ 4f(

x− y

2
)2

for all x, y ∈ R. By (3.2),

(f(x) + f(y))2 + 4f(
x + y

2
)2 − 4(f(x)

+f(y))f(
x + y

2
) ≤ 4f(

x− y

2
)2

(3.4)

for all x, y ∈ R.
It follows from (3.3) and (3.4) that

2(f(x) + f(y))2 − 4(f(x) + f(y))(f(
x− y

2
) + f(

x + y

2
)) ≤ 0

for all x, y ∈ R. So

(−2f(x)− 2f(y))(2f(
x + y

2
) + 2f(

x− y

2
)− f(x)− f(y)) ≤ 0

for all x, y ∈ R. Thus

(−f(x)− f(y))(2f(
x + y

2
) + 2f(

x− y

2
)− f(x)− f(y)) ≤ 0(3.5)

for all x, y ∈ R.
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Replacing x by −x−y
2 and y by −x+y

2 in (3.3), we get

(f(
−x− y

2
) + f(

−x + y

2
))2 + 4f(

−y

2
)2 − 4(f(

−x− y

2
)

+ f(
−x + y

2
))f(

−y

2
) ≤ 4f(

−x

2
)2

for all x, y ∈ R. Since f(−x) = f(x),

(f(
x + y

2
) + f(

x− y

2
))2 + 4f(

y

2
)2 − 4(f(

x + y

2
)

+f(
x− y

2
))f(

y

2
) ≤ 4f(

x

2
)2

(3.6)

for all x, y ∈ R.
Replacing x by −x−y

2 and y by x−y
2 in (3.3), we get

(f(
−x− y

2
) + f(

x− y

2
))2 + 4f(

−x

2
)2 − 4(f(

−x− y

2
)

+ f(
x− y

2
))f(

−x

2
) ≤ 4f(

−y

2
)2

for all x, y ∈ R. Since f(−x) = f(x),

(f(
x + y

2
) + f(

x− y

2
))2 + 4f(

x

2
)2

−4(f(
x + y

2
) + f(

x− y

2
))f(

x

2
) ≤ 4f(

y

2
)2

(3.7)

for all x, y ∈ R.
It follows from (3.6) and (3.7) that

2(f(
x + y

2
) + f(

x− y

2
))2 − 4(f(

x + y

2
) + f(

x− y

2
))(f(

x

2
) + f(

y

2
)) ≤ 0

for all x, y ∈ R. So

(2f(
x + y

2
) + 2f(

x− y

2
))(f(

x + y

2
) + f(

x− y

2
)− 2f(

x

2
)− 2f(

y

2
)) ≤ 0

for all x, y ∈ R. Since f(y
2 ) = 1

4f(y),

(2f(
x + y

2
) + 2f(

x− y

2
))(2f(

x + y

2
)

+2f(
x− y

2
)− f(x)− f(y)) ≤ 0

(3.8)

for all x, y ∈ R.
It follows from (3.5) and (3.8) that

(2f(
x + y

2
) + 2f(

x− y

2
)− f(x)− f(y))2 ≤ 0

for all x, y ∈ R.
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Therefore,

2f(
x + y

2
) + 2f(

x− y

2
)− f(x)− f(y) = 0

for all x, y ∈ R. So

2f(
x + y

2
) + 2f(

x− y

2
) = f(x) + f(y)

for all x, y ∈ R.

Remark 3.1. Under the assumption f(2x) = 4f(x) for all x ∈ R,
the inequality (3.1) is equivalent to the inequality

|2f(x) + 2f(y)− f(x− y)| ≤ |f(x + y)|(3.9)

for all x, y ∈ R. Gilányi [3] proved that if f : R → R satisfies the
inequality (3.9) then

f(x + y) + f(x− y) = 2f(x) + 2f(y)

holds for all x, y ∈ R. Since f(x
2 ) = 1

4f(x) for all x ∈ R,

2f(
x + y

2
) + 2f(

x− y

2
) = f(x) + f(y)

holds for all x, y ∈ R.
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