JORDAN-VON NEUMANN TYPE FUNCTIONAL INEQUALITIES

Young Hak Kwon *, Ho Min Lee **, Jeong Soo Sim***, Jeha Yang ${ }^{* * * *, ~ a n d ~ C h o o n k i l ~ P a r k * * * * * ~}$

Abstract. It is shown that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following functional inequalities

$$
\begin{align*}
& |f(x)+f(y)| \leq|f(x+y)|, \tag{0.1}\\
& |f(x)+f(y)| \leq\left|2 f\left(\frac{x+y}{2}\right)\right|, \tag{0.2}\\
& \text { (0.3) }\left|f(x)+f(y)-2 f\left(\frac{x-y}{2}\right)\right| \leq\left|2 f\left(\frac{x+y}{2}\right)\right| \text {, }
\end{align*}
$$

respectively, then the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Cauchy functional equation, the Jensen functional equation and the Jensen quadratic functional equation, respectively.

1. Introduction and preliminaries

Gilányi [3] showed that if f satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\| \tag{1.1}
\end{equation*}
$$

then f satisfies the quadratic functional equation

$$
2 f(x)+2 f(y)=f(x+y)+f(x-y) .
$$

See also [6]. Gilányi [4] and Fechner [2] proved the generalized HyersUlam stability of the functional inequality (1.1). Park, Cho and Han [5] investigated the Jordan-von Neumann type Cauchy-Jensen additive mappings and prove their stability, and Cho and Kim [1] proved the generalized Hyers-Ulam stability of the Jordan-von Neumann type Cauchy-Jensen additive mappings.

Received July 16, 2007.
2000 Mathematics Subject Classification: Primary 39B62, 39B72.
Key words and phrases: Jordan-von Neumann functional equation, functional inequality.

This was supported by the R \& E program of KOSEF in 2007.

In Section 2 , we prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the additive functional inequalities (0.1) and (0.2), respectively, then the function f is Cauchy additive and Jensen additive, respectively, and that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the quadratic functional inequality (0.3), then the function f is Jensen quadratic.

Throughout this paper, let \mathbb{R} denote the field of real numbers.

2. Jordan-von Neumann type additive functional inequalities

In this section, we investigate the Cauchy additive inequality and the Jensen additive inequality.

Theorem 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
\begin{equation*}
|f(x)+f(y)| \leq|f(x+y)| \tag{2.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Then f satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
Proof. Letting $x=y=0$ in (2.1), we get

$$
|2 f(0)| \leq|f(0)|
$$

So $f(0)=0$. Letting $y=-x$ in (2.1), we get

$$
|f(x)+f(-x)| \leq|f(0)|=0
$$

for all $x \in \mathbb{R}$. Hence $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
First of all, we show that $|f(x)+f(y)|=|f(x+y)|$ for all $x, y \in \mathbb{R}$.
We divide into four cases.
(i) Case 1. $f(x) \geq 0$ and $f(y) \geq 0$.

It follows from (2.1) that

$$
f(x)+f(y) \leq|f(x+y)|
$$

Replacing x by $x+y$ and y by $-y$ in (2.1), we get

$$
|f(x+y)+f(-y)| \leq|f(x)|=f(x)
$$

So

$$
|f(y)|+|f(x+y)+f(-y)| \leq f(x)+|f(y)|=f(x)+f(y)
$$

By the triangle inequality,

$$
\begin{aligned}
|f(y)|+|f(x+y)+f(-y)| & \geq|f(y)+(f(x+y)+f(-y))| \\
& =|f(x+y)+f(y)+f(-y)|=|f(x+y)|
\end{aligned}
$$

Thus

$$
|f(x+y)| \leq f(x)+f(y)
$$

So

$$
|f(x+y)|=f(x)+f(y)
$$

(ii) Case 2. $f(x)<0$ and $f(y)<0$.

Replacing x by $-x$ and y by $-y$, we get

$$
|f(-x)+f(-y)|=f(-x-y)
$$

By (i),

$$
|-f(x)-f(y)|=|-f(x+y)|
$$

So

$$
|f(x)+f(y)|=|f(x+y)|
$$

(iii) Case 3. $f(x) \geq 0, f(y) \leq 0$ and $f(x+y) \geq 0$.

It follows from (2.1) that

$$
f(x)+f(y) \leq|f(x+y)|
$$

Replacing x by $x+y$ and y by $-y$ in (2.1), we get

$$
|f(x+y)+f(-y)| \leq|f(x)|
$$

So

$$
|f(x+y)-f(y)| \leq f(x)
$$

For the case $f(x+y) \geq 0$,

$$
f(x+y)-f(y) \leq f(x)
$$

Thus

$$
f(x+y) \leq f(x)+f(y)
$$

Since

$$
\begin{aligned}
& f(x)+f(y) \leq f(x+y) \\
& f(x)+f(y)=f(x+y)
\end{aligned}
$$

So

$$
|f(x)+f(y)|=|f(x+y)|
$$

For the case $f(x+y)<0$, replacing x by $x+y$ and y by $-x$ in (2.1),

$$
|f(x+y)-f(x)| \leq|f(y)|
$$

Since

$$
\begin{gathered}
f(x)-f(x+y) \leq-f(y) \\
0 \leq f(x)+f(y) \leq f(x+y)<0
\end{gathered}
$$

which is a contradiction.

Similarly, for the case $f(x) \leq 0, f(y) \geq 0, f(x)+f(y) \geq 0$, one can show that

$$
|f(x)+f(y)|=|f(x+y)| .
$$

(iv) Case 4. $f(x) \geq 0, f(y) \leq 0$ and $f(x+y)<0$.

Replacing x by $-x$ and y by $-y$ in (2.1), we get

$$
|f(-x)+f(-y)|=|f(-x-y)| .
$$

By (iii),

$$
|-f(x)-f(y)|=|-f(x+y)| .
$$

So

$$
|f(x)+f(y)|=|f(x+y)| .
$$

Similarly, for the case $f(x) \leq 0, f(y) \geq 0, f(x)+f(y)<0$, one can show that

$$
|f(x)-f(y)|=|f(x+y)| .
$$

Thus

$$
|f(x)+f(y)|=|f(x+y)|
$$

for all $x, y \in \mathbb{R}$.
Next, we show that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
Since $|f(x+y)|=|f(x)+f(y)|, f(x+y)=f(x)+f(y)$ or $f(x+y)=$ $-f(x)-f(y)$.

Assume that there are $x, y \in \mathbb{R}$ such that $f(x+y)=-f(x)-f(y)$ with $f(x+y) \neq 0$.

We divide into four cases.
(i) Case 1. $f(x) \geq 0$ and $f(y) \geq 0$.

Since $f(x+y)=-f(x)-f(y) \leq 0, f(x+y)<0$. Replacing x and y by $x+y$ and $-y$ in (2.1), respectively, we get

$$
|f(x+y)-f(y)|=|f(x+y)+f(-y)|=|f(x)|=f(x) .
$$

Thus $f(y)-f(x+y)=f(x)$. Since $f(y)-f(x)=f(x+y)=-f(x)-f(y)$, $f(y)=0$.

Similarly, we can show that $f(x)=0$. So $f(x+y)=-f(x)-f(y)=0$, which is a contradiction.
(ii) Case 2. $f(x) \leq 0$ and $f(y) \leq 0$.

Note that $f((-x)+(-y))=-f(-x)-f(-y), f(-x)=-f(x) \geq 0$ and $f(-y)=-f(y) \geq 0$. By (i), we can get $f(x+y)=0$, which is a contradiction.
(iii) Case 3. $f(x) \geq 0, f(y) \leq 0$ and $f(x+y) \geq 0$.

Since $f(x+y)=-f(x)-f(y) \leq 0, f(x+y)<0$. Replacing x and y by $x+y$ and $-x$ in (2.1), respectively, we get $|f(x+y)+f(-x)|=|f(y)|$.

Thus $f(x)-f(x+y)=-f(y)$. So $f(x+y)=f(x)+f(y)=-f(x+y)$, which is a contradiction.
(iv) Case 4. $f(x) \geq 0, f(y) \leq 0$ and $f(x+y) \leq 0$.

Since $f(x+y)=-f(x)-f(y) \geq 0, f(x+y)<0$. Replacing x and y by $x+y$ and $-y$ in (2.1), respectively, we get $|f(x+y)+f(-y)|=|f(x)|$. Thus $f(x+y)-f(y)=f(x)$. So $f(x+y)=f(x)+f(y)=-f(x+y)$, which is a contradiction.

Therefore,

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$, as desired.
Corollary 2.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(2 x)=$ $2 f(x)$ such that

$$
|f(x)+f(y)| \leq\left|2 f\left(\frac{x+y}{2}\right)\right|
$$

for all $x, y \in \mathbb{R}$. Then f satisfies $2 f\left(\frac{x+y}{2}\right)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
Proof. Since $f(2 x)=2 f(x)$, the inequality

$$
|f(x)+f(y)| \leq\left|2 f\left(\frac{x+y}{2}\right)\right|
$$

is equivalent to the inequality

$$
|f(x)+f(y)| \leq\left|2 f\left(\frac{x+y}{2}\right)\right|=|f(x+y)|
$$

for all $x, y \in \mathbb{R}$. By Theorem 2.1,

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$, and

$$
2 f\left(\frac{x+y}{2}\right)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$, as desired.

3. Jordan-von Neumann type quadratic functional inequalities

In this section, we investigate the Jensen quadratic inequality.
THEOREM 3.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(2 x)=4 f(x)$ such that

$$
\begin{equation*}
\left|f(x)+f(y)-2 f\left(\frac{x-y}{2}\right)\right| \leq\left|2 f\left(\frac{x+y}{2}\right)\right| \tag{3.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Then f satisfies $2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.

Proof. Putting $x=0$ in $f(2 x)=4 f(x)$, we get $f(0)=4 f(0)$. So $f(0)=0$.

Letting $y=-x$ in (3.1), we get

$$
|f(x)+f(-x)-2 f(x)| \leq|f(0)|=0
$$

for all $x \in \mathbb{R}$. So

$$
\begin{equation*}
f(-x)=f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
It follows from (3.1) that

$$
\left(f(x)+f(y)-2 f\left(\frac{x-y}{2}\right)\right)^{2} \leq 4 f\left(\frac{x+y}{2}\right)^{2}
$$

for all $x, y \in \mathbb{R}$. Hence

$$
\begin{align*}
(f(x)+ & f(y))^{2}+4 f\left(\frac{x-y}{2}\right)^{2}-4(f(x) \\
& +f(y)) f\left(\frac{x-y}{2}\right) \leq 4 f\left(\frac{x+y}{2}\right)^{2} \tag{3.3}
\end{align*}
$$

for all $x, y \in \mathbb{R}$.
Replacing y by $-y$ in (3.3), we get
$(f(x)+f(-y))^{2}+4 f\left(\frac{x+y}{2}\right)^{2}-4(f(x)+f(-y)) f\left(\frac{x+y}{2}\right) \leq 4 f\left(\frac{x-y}{2}\right)^{2}$
for all $x, y \in \mathbb{R}$. By (3.2),

$$
\begin{align*}
(f(x)+ & f(y))^{2}+4 f\left(\frac{x+y}{2}\right)^{2}-4(f(x) \tag{3.4}\\
& +f(y)) f\left(\frac{x+y}{2}\right) \leq 4 f\left(\frac{x-y}{2}\right)^{2}
\end{align*}
$$

for all $x, y \in \mathbb{R}$.
It follows from (3.3) and (3.4) that

$$
2(f(x)+f(y))^{2}-4(f(x)+f(y))\left(f\left(\frac{x-y}{2}\right)+f\left(\frac{x+y}{2}\right)\right) \leq 0
$$

for all $x, y \in \mathbb{R}$. So

$$
(-2 f(x)-2 f(y))\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)\right) \leq 0
$$

for all $x, y \in \mathbb{R}$. Thus
$(3.5)(-f(x)-f(y))\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)\right) \leq 0$
for all $x, y \in \mathbb{R}$.

Replacing x by $\frac{-x-y}{2}$ and y by $\frac{-x+y}{2}$ in (3.3), we get

$$
\begin{aligned}
\left(f\left(\frac{-x-y}{2}\right)\right. & \left.+f\left(\frac{-x+y}{2}\right)\right)^{2}+4 f\left(\frac{-y}{2}\right)^{2}-4\left(f\left(\frac{-x-y}{2}\right)\right. \\
& \left.+f\left(\frac{-x+y}{2}\right)\right) f\left(\frac{-y}{2}\right) \leq 4 f\left(\frac{-x}{2}\right)^{2}
\end{aligned}
$$

for all $x, y \in \mathbb{R}$. Since $f(-x)=f(x)$,

$$
\begin{array}{r}
\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)\right)^{2}+4 f\left(\frac{y}{2}\right)^{2}-4\left(f\left(\frac{x+y}{2}\right)\right. \tag{3.6}\\
\left.+f\left(\frac{x-y}{2}\right)\right) f\left(\frac{y}{2}\right) \leq 4 f\left(\frac{x}{2}\right)^{2}
\end{array}
$$

for all $x, y \in \mathbb{R}$.
Replacing x by $\frac{-x-y}{2}$ and y by $\frac{x-y}{2}$ in (3.3), we get

$$
\begin{aligned}
\left(f\left(\frac{-x-y}{2}\right)\right. & \left.+f\left(\frac{x-y}{2}\right)\right)^{2}+4 f\left(\frac{-x}{2}\right)^{2}-4\left(f\left(\frac{-x-y}{2}\right)\right. \\
& \left.+f\left(\frac{x-y}{2}\right)\right) f\left(\frac{-x}{2}\right) \leq 4 f\left(\frac{-y}{2}\right)^{2}
\end{aligned}
$$

for all $x, y \in \mathbb{R}$. Since $f(-x)=f(x)$,

$$
\begin{array}{r}
\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)\right)^{2}+4 f\left(\frac{x}{2}\right)^{2} \tag{3.7}\\
-4\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)\right) f\left(\frac{x}{2}\right) \leq 4 f\left(\frac{y}{2}\right)^{2}
\end{array}
$$

for all $x, y \in \mathbb{R}$.
It follows from (3.6) and (3.7) that

$$
2\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)\right)^{2}-4\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)\right)\left(f\left(\frac{x}{2}\right)+f\left(\frac{y}{2}\right)\right) \leq 0
$$

for all $x, y \in \mathbb{R}$. So
$\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)\right)\left(f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)-2 f\left(\frac{x}{2}\right)-2 f\left(\frac{y}{2}\right)\right) \leq 0$
for all $x, y \in \mathbb{R}$. Since $f\left(\frac{y}{2}\right)=\frac{1}{4} f(y)$,

$$
\begin{align*}
& \left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)\right)\left(2 f\left(\frac{x+y}{2}\right)\right. \tag{3.8}\\
& \left.\quad+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)\right) \leq 0
\end{align*}
$$

for all $x, y \in \mathbb{R}$.
It follows from (3.5) and (3.8) that

$$
\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)\right)^{2} \leq 0
$$

for all $x, y \in \mathbb{R}$.

Therefore,

$$
2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)=0
$$

for all $x, y \in \mathbb{R}$. So

$$
2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$.
REmark 3.1. Under the assumption $f(2 x)=4 f(x)$ for all $x \in \mathbb{R}$, the inequality (3.1) is equivalent to the inequality

$$
\begin{equation*}
|2 f(x)+2 f(y)-f(x-y)| \leq|f(x+y)| \tag{3.9}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Gilányi [3] proved that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the inequality (3.9) then

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

holds for all $x, y \in \mathbb{R}$. Since $f\left(\frac{x}{2}\right)=\frac{1}{4} f(x)$ for all $x \in \mathbb{R}$,

$$
2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y)
$$

holds for all $x, y \in \mathbb{R}$.

References

[1] Y.-S. Cho and H-M. Kim, Stability of functional inequalities with CauchyJensen additive mappings, Abstr. Appl. Math. 2007 (2007), Art. ID 89180, 13 pages.
[2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[4] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707710.
[5] C. Park, Y.-S. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann-type additive functional equations, Abstr. Appl. Math. 2006 (2006), Art. ID 41820, 13 pages.
[6] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.

```
*
Seoul Science High School
Seoul, 110-530, Republic of Korea
E-mail: sshs1991@hanmail.net
**
Seoul Science High School
Seoul, 110-530, Republic of Korea
E-mail: cross_dragon@naver.com
***
Seoul Science High School
Seoul, 110-530, Republic of Korea
E-mail: digivice1230@hanmail.net
****
Seoul Science High School
Seoul, 110-530, Republic of Korea
E-mail: imjeha@hanmail.net
\(* * * * *\)
Department of Mathematics
HanYang University
Seoul, 133-791, Republic of Korea
E-mail: baak@@hanyang.ac.kr
```

