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ON THE CONTINUITY OF THE ZADEH EXTENSIONS

YooN Hor Goo * AND JONG SUH PARK **

ABSTRACT. In this paper, we prove the continuity of the Zadeh
extensions for continuous surjections and for semiflows.

1. Introduction

The Zadeh extension is the way we produce a fuzzy transformation f :
F(X) — F(X) for a given function f: X — X. The Zadeh extension f
of a function f has been studied and applied by many authors, including
Barros et al. [1, 7, 8], Cabrelli et al. [2] in the study of fuzzy fractals
and Nguyen [5] in set-representation of fuzzy sets.

We are interested in the study of Fuzzy Dynamical Systems applied
to biological population dynamics, and it is our objective in the future,
to model some biological phenomenal using difference equations playing
an important role in the dynamics of the process. In this sense the
Zadeh extension will appear as a fundamental tool relating the classical
and fuzzy models.

The main result in [8] establishs that if a function f : R" — R" is
continuous, then the Zadeh extension f : (F(R"), D) — (F(R"),D) is
also continuous and conversely, where D is a normal metric on F(R").

In this paper we investigate that the results [8] are true taking a
locally compact metric space X instead of R™, being the generalizations.

The structure of this paper is as follows. In Section 2, if a function
f X — X is a continuous surjection, then we prove the continuity of
the Zadeh extension f in D-metric and finally, in Section 3, in the case a
semiflow f: X x Rt — X, we also establish the continuity of the Zadeh
extension f in D-metric.
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2. Zadeh’s extension of continuous surjections

Let (X, d) be a locally compact metric space. We denote the set of all
nonempty compact subsets of X by Q(X). For A, B € Q(X), we define

h(A7 B) = max{ﬁ(/LB)v/B(BaA)}

where (A, B) = sup{d(a,B) | a € A}. Then h is a metric on Q(X)
which is called the Hausdorff metric induced by d.

For u: X — [0,1] and « € [0, 1], we define the a—level set [u]* of u
by

o [ {zeXu@)>a}, if 0<a<l1
[ _{{$€XIU(x)>O}, if a=0. }

The following lemma shows that the a—level set [u]® is well-defined.

LEMMA 2.1. Let u,v:X — [0,1] be the fuzzy sets. Then
u=wv if and only if [u]* = [v]* for all « € [0,1].

Proof. 1t is clear that if w = v then [u]* = [v]® for all a € [0,1]. If
u # v, then there exists x € X such that u(x) # v(z). We may assume
that u(x) < v(z). Choose a with u(x) < o < v(x). Since z € [u]* —[v]¢,
we have [u]® # [v]®. This completes the proof. O

We define the family of the fuzzy sets whose a—level sets are in (X))
and denote F(X). Let

F(X)=A{u:X —10,1] | [u]* € QX) for all « €[0,1]}.
In this family we define D-metric on F(X) that we call normal metric.
For u,v € F(X), we define
D(u,v) = sup{h([u]*, [v]*) | o € [0,1]}.

The next lemma establishes that D is a metric on F(X).

LEMMA 2.2. The mapping D is a metric on F(X).

Proof. 1t is clear that D(u,v) > 0 and D(u,v) = D(v,u) for all
u,v € F(X). Let D(u,v) = 0. For all a € [0,1], since h([u]?, [v]*) <
D(u,v) = 0, we have h([u]*, [v]*) = 0. Thus [u]* = [v]*. By Lemma 2.1,
we get v = v. Clearly if u = v then D(u,v) = 0. Let u,v,w € F(X).
Since

h([u]®, [v]%) h([u]®; [w]®) + h(fw]®, [0]%)

D(u,w) + D(w,v) for all «€[0,1],

VARVAN
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we have D(u,v) < D(u,w) 4+ D(w,v) and the proof is complete. O

Let f : X — X be a continuous surjection. We define the Zadeh
extension f of f by

flu)(z) = sup{u(y) | y € /" (2)}.

The following lemma proves that f is a well-defined function.

LEMMA 2.3. Let f: X — X be a continuous surjection, f the Zadeh

extension of f and u € F(X). Then we have [f(u)]* = f([u]*) for all
a € [0,1].

Proof. Let 0 < a < 1. For any = € [f(u)]*, we have f(u)(z) > a. If
f(u)(z) > «, then there exists y € f~!(x) such that u(y) > a. Since
y € [u]®, we have z = f(y) € f([u]®). If f(u)(z) = a, then there
exists a sequence (y,) in f~!(x) such that u(y,) — a. Choose ¢ with
0 < ¢ < a. Since u(yn) — o, we may assume that u(y,) > ¢. Since (yn)
is a sequence in [u]¢ and [u]¢ is a compact set, (y,) has a convergent
subsequence. Let y, — 3. Then y € f~1(x) = f~!(x). We claim that
u(y) > a. If u(y) < a, then we can choose £ such that u(y) < £ < a.
Since u(y,) — a, we may assume that u(y,) > ¢ for all n. Since y,, € [u]¢
and [u]¢ is a compact set, we have y, € [u]¢. Thus a < u(y) < €. This
is a contradiction. Hence u(y) > « and so y € [u]®. Therefore we get
v = f(y) € F([u]*).

Conversely, given any = € f([u]®), there exists y € [u]* such that
x = f(y). Since f(u)(z) > u(y) > a, we have z € [f(u)]®. Thus we

have [f(u)]* = f([u]?). )

Let o = 0. Given any = € [f(u)]°, there exists a sequence (z,,) such
that f(u)(z,) > 0 and z, — z. By the definition of f(u)(x,), there
exists y, € f1(x,) such that u(y,) > 0. Since (y,) is a sequence in
[u]® and [u]? is a compact set, (y,) has a convergent subsequence. Let
yn — y € [u]°. Since f is continuous, we have f(y,) — f(y). Since
flyn) = an — 2, we get @ = f(y) € f([u]").

Conversely, given any = € f([u]?), there exists y € [u]® such that 2 =
f(y). For each neighborhood U of z, there exists a neighborhood V of y
such that f(V) C U. Since y € [u]°, we can choose z € V with u(z) > 0.
Let w = f(z). Since w = f(z) € f(V) € U and f(u)(w) > u(z) > 0,
we have w € UN{p € X | u(p) > 0}. Thus z € [f(u)]°. Hence we have
[f(1)]° = f(Ju]°) and so the proof is complete. O
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For our main result we need the following lemma.

LEMMA 2.4. Let K be a compact subset of X and f a continuous
surjection. Then for any € > 0 there exists § > 0 such that x € K and

d(z,y) < 6 implies d(f (), f(y)) <.
Proof. For each x € K, there exists d, > 0 such that
€

d(z,y) <6, implies d(f(z), f(y)) < 5-

{B(, %z) | z € K} is an open cover of K. Since K is compact there
exist finitely many x1,--- , 2, € K such that K C |J!, B(z;, 7) Let
§ = tmin{s,,, - ,0p}. o€ K and d(z,y) < 6, then = € B(x,, 22)
for some . Since d(x;, ) < 6;1' < 0z;, we have d(f(x;), f(x)) < 5. Since

O, Op.  Op.

we have d(f(x;), f(y)) < §. Thus we get

A(f (@), f) < d(f (@), f@D) +d( @), J0) < 5+ 5 =e
This completes the proof. O

We are now going to prove the continuity for the Zadeh extension of
a continuous surjection in D-metric.

THEOREM 2.5. Let f : X — X be a continuous surjection. Then the
Zadeh extension f of f is continuous.

Proof. Let u € F(X). Since [u]® € Q(X) and X is a locally compact
metric space, there exists ¢ > 0 such that K = B([u]?,() is compact.
For any € > 0, by Lemma 2.4, there exists 0 € (0,() such that x € K
and d(z,y) < ¢ implies d(f(z), f(y)) < 2e. Let D(u,v) < 4. Since
h([u]?, [v]°) < D(u,v) < &, we have

[v]° € B([u]®,0) € B([u]°,¢) C K.

It is clear that [u]® C [u]® C K and [v]* C [v]° C K for all « € [0,1]. Let
a € [0,1]. Since h([u]®, [v]*) < D(u,v) < 0, we have [v]* C B([u]*,0)
and [u]* C B([v]%,d). For any = € [v]*, there exists y € [u]® such
that d(z,y) < d. Thus d(f(x), f(y)) < %e and so f(x) € B(f([u]?), %6)
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Hence f([v]*) C B(f([u]®), 2¢). Similarly we can show that f([u]*) C
B(f([v]*), 2¢). By Lemma 2.3, we have

F@ € BUF@I, S0 and )" € BIF@ S0

Thus A([f(u)]®, [f(v)]*) < 2e. Hence we have D(f(u), f(v)) < 2e <

€.
Therefore f is continuous at u and hence the proof is complete. ]

Let f: X — X be a continuous surjection. A subset A of X is said
to be invariant for f if f(A) = A.

The next theorem shows that the Zadeh extension has a fixed point.

THEOREM 2.6. Let f be the Zadeh extension of a continuous surjec-
tion f. Then a subset A of X is invariant if and only if f(xa) = xa
where x 4 is the characteristic function of A.

Proof. Let A be an invariant set. For any z € X, if x € A = f(A),
then there exists y € A such that @ = f(y). Since 1 > f(xa)(z) >
xA(y) = 1, we have f(xa)(z) = 1. Let z € X — A. For each y € f~!(z),
since y € X — A, we have y4(y) = 0. Thus we get f(xa)(z) = 0. Hence

f(xa) = xa.

Assume that f(XA) = xa. For any x € f(A), there exists y € A such
that 2 = f(y). Since 1 > f(xa)(z) > xa(y) = 1, we have f(xa)(z) = 1.
Thus xa(z) = f(xa)(z) =1 and so z € A.

Let x € A. If f~1(x) N A = (), then xa(y) = 0 for all y € f~1(x).
Thus f(xa)(z) = 0. Hence ya(z) = f(xa)(z) = 0 and so we have a
contradiction. Therefore we can choose y € f~!(z) N A. Then we have
x = f(y) € f(A). This completes the proof. O

3. Zadeh’s extension for semiflows

In this section, we study some properties of the Zadeh extension for
semiflows.
A continuous map f: X x R — X is called a semiflow if

(3.1) f(z,0) =z for all =z € X and
(3.2) f(f(z,s),t) = f(z,s+1t) forall € X and s,t € RT.
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Let f be a semiflow on X. For each t € RT, define f; : X — X by
fi(x) = f(x,t). Then f; is continuous for all ¢ € RT. Assume that f; is
a surjection for all t € R™.

If f: X x Rt — X is a semiflow, we define Zadeh’s extension f of a
semiflow f by

fiF(X) x R = F(X), f(ut)(@) =sup{uly) | y € f{ ' (x)}.

The following result shows that Zadeh’s extension f of a semiflow f
is well-defined.

LEMMA 3.1. Let u € F(X) and t € RT. Then we have [f(u,t)]* =
F([u]® x {t}) for all a € [0, 1].

Proof. Since f; is a continuous surjection for all t € R, by Lemma
2.3, we have

[f(u, )] = [fr(@)]® = fi([u]®) = f([u]* x {t})

and so the proof is complete. O
We need to state one observation before the main result.

LEMMA 3.2. Let K be a compact subset of X, f a semiflow and
a € RT. For any e > 0, there exists § > 0 such that ifx € K, d(x,y) < 6,
and s,t € (a —d,a+ 0) N RT, then d(f(z,s), f(y,t)) <e.

Proof. Let e > 0. For each x € K, since f is continuous at (z, a), there
is 0z > 0 such that d(z,y) < §, and |a—t| < §, implies d(f(z,a), f(y,t)) <
€

5. Thus we see that {B(x,%z) |z € K} is an open covering of K.

Since K is a compact set, there are finitely many x1,--- ,x, € K such
that K C U™, B(wi, %), Let § = lmin{d,,,--- 6, }. Ifa € K,

d(z,y) < 4, and s,t € (a —d,a+ ) N RT, then z € B(z;, %) for some
1. Since

Oz, O,
d(z;, ) < ?’ <0y and Ja—s| <6< 7’ < g,

we have d(f(z;,a), f(z,s)) < §. Since

d(wi,y) < d(zg, x) + d(w,y) < - +0 < 5 T 5 = 0z, and

O,
|a—t\<5§%<5%,
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we have d(f(z;,a), f(y,t)) Thus we obtain

<5 T
A 90, 1(0r1) < S 2,9), 1o 0) + (S ), 10,)

<t4i=
22~ °¢
This completes the proof. O

Next we state the main result that Zadeh’s extension of a semiflow is
continuous.

THEOREM 3.3. If f : X x RY — X is a semiflow, then Zadeh’s
extension f of a semiflow f is continuous.

Proof. Let u € F(X) and a € RT. Since [u]° is a compact set and
X is a locally compact metric space, there exists ( > 0 such that K =
B([u]?,{) is compact. Given any € > 0, by Lemma 3.2, there exists § > 0
such that

ifze K, d(z,y) <4, and s,t € (a—6,a+0)NRT,

then d(f(x,s), f(y,1)) < %6.

Let D(u,v) < 4 and |a —t| < §. Since h([u]’, [v]°) < D(u,v) < 6, we
have
[v]° € B([u]’,8) € B([u]’,¢) € K.

It is clear that [u]* C [u]° € K and [v]* C [v]° C K for all a €
[0,1]. Let « € [0,1]. Since h([u]®, [v]*) < D(u,v) < §, we have [v]* C
B([u]*,6) and [v]* C B([u]%,?). For any x € [v]%, there exists y € [u]®
such that d(z,y) < 8. Thus d(f(z,t), f(y,a)) < 2e and so f(z,t) €
B(f([u]*, a), %e) Hence f([v]%,t) C B(f([u]*, a),2 3€). Similarly we can
show that f([u]®,a) C B(f([v]% 1), 3¢). By Lemma 3.1, we have

F, 0] € B(f(wa)*, Se) and
[Fw )l € B, )% Se).

Thus A([f(u, a)]*, [f(v,8)]%) < Ze. Hence we have D(f(u,a), f(v,t)) <
%e < €. Thus f is continuous at (u,a) and so the proof is complete. []

The following theorem gives a result about Zadeh’s extension of a
semiflow.
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THEOREM 3.4. Let f be a semiflow on X. Then so is Zadeh’s exten-
sion f of a semiflow f.

Proof. Tt is clear that f(u,0) = u for all u € F(X). We will show
that

F(f(u,s),t) = f(u,s+1t) for allu e F(X) and s,t € R*.

Forany y € f,}(x), put f(y,s) = z. Sincex = f(y, s+t) = f(f(y.s),t) =
f(z,t), we have

F(F(u,5),t)(x) >

Thus we get f(u, s+ 6)(z) < F(f(u,5),£)(2).

Assume that f(f(u,s),t)(z) > f(u,s+t)(z). Choose ¢ such that
F(f @, 8),0)(x) > ¢ > flu, s +1)(@).

Then there exists z € f; !(z) such that f(u, s)(z) > ¢. There exists y €
51 (2) such that u(y) > ¢. Since f(y,s+t) = f(f(y,s),t) = f(z,t) =z

we have

Fu,)(2) = uly).

Fluys +6)(@) > uly) > ¢ > flu,s +1)(@).
This is a contradiction. Thus f(u,s+t)(z) = f(f(u,s),t)(z). Hence we
have
flu,s+1t) = f(f(u,9),t).
This completes the proof. O

Let f be a semiflow on X. A subset A of X is said to be invariant if
fi(A)=Aforallt € RT.

From Theorem 2.6, we obtain the following theorem.

THEOREM 3.5. Suppose ft is Zadeh’s extension of a surjection f;.
Then a subset A of X is invariant if and only if fi(x4) = xa for all
teRY.
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