JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 20, No. 4, December 2007

HYERS-ULAM STABILITY OF FUNCTIONAL
INEQUALITIES ASSOCIATED WITH CAUCHY
MAPPINGS

HARK-MAHN KiM* AND JEONG-HA Op**

ABSTRACT. In this paper, we investigate the generalized Hyers—
Ulam stability of the functional inequality
llaf(z) +bf(y) + cf ()|l < [If(az + by + c2))|| + ¢(x,y, 2)

associated with Cauchy additive mappings. As a result, we obtain
that if a mapping satisfies the functional inequality with perturbing
term which satisfies certain conditions then there exists a Cauchy
additive mapping near the mapping.

1. Introduction

In 1940, S. M. Ulam [18] gave a talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of un-
solved problems. Among these was the following question concerning
the stability of homomorphisms.

We are given a group G and a metric group G' with metric p(-,-).
Given € > 0, does there exist a § > 0 such that if f : G — G’ satisfies
p(f(zy), f(z)f(y)) <& for all x,y € G, then a homomorphism h : G —
G’ exists with p(f(z),h(z)) <€ for allz € G?

In 1941, D. H. Hyers [7] considered the case of approximately additive
mappings f : E — E’, where E and E’ are Banach spaces and f satisfies
Hyers inequality

[f(x+y) = fx) - fy)l <e
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s _ T f(2"z)
for all z,y € E. It was shown that the limit L(z) = lim, oo =5~
exists for all z € E and that L : E — E’ is the unique additive mapping
satisfying

If(z) = L(z)| < e
In 1978, Th. M. Rassias [15] provided a generalization of Hyers’
Theorem which allows the Cauchy difference to be unbounded.
Let f: E — E’ be a mapping from a normed vector space F into a
Banach space E’ subject to the inequality

(1.1) 1f(x+y) = f(@) = F)ll < e(llzl” + [[y]*)

for all x,y € E, where € and p are constants with ¢ > 0 and p < 1.
Then the limit L(z) = lim, f(g:x) existsforallz € Fand L : E — E'
is the unique additive mapping which satisfies

2e
(12) 1£@) - L@l < s
for all z € E. If p < 0 then inequality (1.1) holds for x,y # 0 and (1.2)
for = # 0.

In 1991, Z. Gajda [3] following the same approach as in Th. M.
Rassias [15], gave an affirmative solution to this question for p > 1.
It was shown by Z. Gajda [3], as well as by Th. M. Rassias and P.
Semrl [16] that one cannot prove a Th. M. Rassias’ type theorem when
p = 1. The inequality (1.1) that was introduced for the first time by
Th. M. Rassias [15] provided a lot of influence in the development of a
generalization of the Hyers—Ulam stability concept. This new concept of
stability is known as generalized Hyers—Ulam stability or Hyers—Ulam—
Rassias stability of functional equations (cf. the books of P. Czerwik [1],
D. H. Hyers, G. Isac and Th. M. Rassias [8]).

P. Gavruta [6] provided a further generalization of Th. M. Rassias’
Theorem. During the last two decades a number of papers and research
monographs have been published on various generalizations and applica-
tions of the generalized Hyers—Ulam stability to a number of functional
equations and mappings (see [9]-[14]).

Gildnyi[4] and Rétz[17] showed that if f satisfies the functional in-
equality

(1.3) 12f () +2f(y) — flzy )] < (I f(y)]

then f satisfies the Jordan—von Neumann functional equation

2f(x) +2f(y) = flay) + flay ™).

[l
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Gilanyi [5] and Fechner [2] proved the generalized Hyers—Ulam sta-
bility of the functional inequality (1.3).

Now, we consider the following functional inequality
(L4) Jlaf(x) +bf(y) +cf)I < [flaz + by + c2)|| + ¢(x,y, 2)

which is associated with Jordan—von Neumann type Cauchy additive
functional equation, where the function ¢ is a perturbing term of the
functional inequality

laf(x) +0f(y) +cf(2)Il < [lf(azx +by + c2)|.

The purpose of this paper is to prove that if f satisfies one of the
inequality (1.4) which satisfies certain conditions, then we can find a
Cauchy additive mapping near f and thus we prove the generalized
Hyers—Ulam stability of the functional inequality (1.4).

2. Main results

Throughout this paper, let G be a normed vector space and Y a
Banach space. First, we consider solutions of the functional inequality
(1.4) with perturbing term zero.

LEMMA 2.1. Let f : G — Y be a mapping with f(0) = 0 such that
(2.1) laf(z) +0f(y) +cf(2)] < | flax + by + cz2)]|
for all x,y,z € G, where abc # 0. Then f is Cauchy additive.

—axr

Proof. By setting z := =% and y := 0 in (2.1), we get

—azx
(2.2) laf(@) +cf(= ) <O =0
for all z € G. Also by letting = := 0, z := %by in (2.1), we get
(2.3 67 ) +ef ()] < IFO)] = 0
for all x € G. Letting z = @ in (2.1), we get
—ax — by
Jaf @) + b5+ ef (L= < 50y = 0
for all z,y € G. It follows from the equalities (2.2) and (2.3) that
—ax —by —ax — by
—Cf(?) - Cf(j) +cf(———) =0,

that is, —f(u) — f(v) + f(u+v) = 0 for all u,v € G, as desired. O
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We recall that a subadditive function is a function ¢ : A — B, having
a domain A and a codomain (B, <) that are both closed under addition,
with the following property:

oz +y) < 9(x) + o(y), Vz,y € A

Now we say that a function ¢ : A — B is contractively subadditive if
there exists a constant L with 0 < L < 1 such that

d(z +y) < Llp(x) + ¢(y)], Yo,y € A.

Then ¢ satisfies the following properties ¢(2z) < 2L¢(z) and so ¢(2"z) <
(2L)"¢(x). Similarly, we say that a function ¢ : A — B is expansively
superadditive if there exists a constant L with 0 < L < 1 such that

Bz +9) > 110@) + o)), Yoy € A
Then ¢ satisfies the following properties ¢(x) < %qﬁ(?x) and so ¢(5r7) <
(5)"o(x).

Now we prove the generalized Hyers—Ulam stability of a functional
inequality (1.4) associated with a Jordan—von Neumann type 3-variable
Cauchy additive functional equation.

THEOREM 2.2. Assume that a mapping f : G — Y with f(0) =0
satisfies the inequality

(2.4) laf(z) +bf(y) + cf ) < [[f(az + by + c2)|| + ¢(x, y, 2)

and that the map ¢ : G x G x G — [0, 00) is expansively superadditive
with a constant L. Then there exists a unique Cauchy additive mapping
A:G —Y, defined by A(x) := lim, . 2" f(57), such that

(2.5) ||aA(x) + bA(y) + cA(z)]| < ||A(azx + by + cz)]|,
L

1f(z) — A(z)|| < D)

() o) +o(0. ")

Proof. We observe by the expansively superadditive condition that

for any z,y,2 € G 6(1252) < (§)"¢(,y, 2).
Letting y := 0 and z : % in (2.4), we get

for all x,y,z € G.

—axr

(2.6 of (@) + ef (2] < 6.0, 725
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for all x € G. By letting x := 0 and 2z := _Tby in (2.4), one obtains

(2) o)+ s 2 < o0, =)

for all z € G. Replacing z by == by in (2.4), we get

aﬂ@+W@Hﬂﬂ;j}£)§M%%

It follows from (2.6), (2.7) and (2.8) that

—ax — by

(2.8) ).

Cc

[ =2 — ) — 22y
< oy, ~ ) 1 (0,0, 720 1 00,5, ),

which yields the Cauchy difference

(2.9) f(z+y)— f(z) = fW)
1 —cr —cy —cx —cy
g H |:¢(CL’ Ta$ + y) + Cb(T,O,iE) + ¢(0a b7y):| )
[ f(2z) —2f ()|l
1 —cx —cx —cx —cx
< o ST 20 o 00) + 000,57 )

for all z,y € G. Thus it follows from (2.9) that

n—1
127 (55) = 2" FGI < Y2 F(55) = 2 F ()
j=m

1 «— —cx 2z —cx x
J+1
Z [ <2J+1a 27+1p’ 2J+1> +¢<2ﬂ+1 0 2J+1)
j=m
—cx =z
+0(0, 575150 5757 |

< 2|C|ZLJ“{ o(—= =5 20) +9(—,0,2) + (0, Z’xm)}

for all x € G and for all nonnegative integers n and m with n > m.
It means that a sequence {2" f(5r)} is Cauchy sequence for all z € G.
Since Y is complete, the sequence {2"f(57)} converges. So one can
define a mapping A : G — Y by A(z) := lim,, . 2" f(57) for all z € G.
Moreover, letting m = 0 and passing the limit n — oo in the last
inequality, we get the approximation (2.5) of f by A.

l\D
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Next, we claim that the mapping A : G — Y is Cauchy additive
satisfying the functional inequality (2.1). In fact, it follows easily from
(2.4) and the condition of ¢ that

laA(z) +bA(y) + cA(z)]]

= Jim 2 as (55) + 05 (5 )+Cf<2n)H
th_,ngﬁn [Hf(aac—l—by—l—cz H i)]
< nh—>ngo {2” f(%) ‘—l—anﬁ(:c,y, z)]
= ||A(ax + by + c2)||.

Thus the mapping A : G — Y is Cauchy additive by Lemma 2.1.
Now, let T': G — Y be another Cauchy additive mapping satisfying
(2.5). Then we obtain

12" () = T@) = 21/ (5) = T35
Lar —cx —cr 2z
= - 1) (e 3 3)

(3000 30) +0(0 7 7]
n+1
<gaop [P0 ) e (S0 (0.

which tends to zero as n — oco. So we can conclude that A(z) = T'(z)
for all x € GG. This proves the uniqueness of A. O

COROLLARY 2.3. Assume that there exist a nonnegative numbers 6
and a real p > 1 such that a mapping f : G — Y with f(0) = 0 satisfies
the inequality

laf(x) +0f(y) + cf ()| < [If(az + by + c2)[| + O([|<[” + [l + [[2]]")

for all z,y,z € G. Then there exists a unique Cauchy additive mapping
A: G — Y such that

laA(z) + bA(y) + cA()| < || A(az + by + e2)],
Ol||x||P c|P c|P
@) - AWl < lell”_ [2lel”  2lel

2P 4 92
@ —2) [Jap " 7T
for all x,y,z € G.
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THEOREM 2.4. Assume that a mapping f : G — Y with f(0) =
0 satisfies the inequality (2.4) and that the map ¢ : G x G x G —
[0, 00) is contractively subadditive with a constant L. Then there exists
a unique Cauchy additive mapping A : G — Y, defined by A(x) =
limy,— oo 2%]”(2":6), such that

(2.10) |laA(z) + bA(y) + cA(2)|| < ||A(az + by + c2)||,

1) =A@ < 5= [¢( = 22)

#9(07) (0 )]

for all x,y,z € G.

Proof. We get by (2.9)

(2.11) H— F2m )——f (2"z) H ZHW Hf( JHIE)H

< g e )
Cx,o,zﬂ'a;) n ¢<0, _2;“,23'9;)}
<Pl ) o) o0, 550)

for all nonnegative integers n,m with n > m and all x € G. It means
that a sequence {5 f(2"z)} is Cauchy sequence for all z € G. So one
can define a mapping A : G — Y by A(x) := lim,, 2%]‘“(2’%) for all
x € G. Moreover, letting m = 0 and passing the limit n — oo in (2.11),
we get (2.10).

The remaining proof goes through by the similar argument to Theo-
rem 2.2. O

COROLLARY 2.5. Assume that there exist a nonnegative numbers 6, §
and a real p < 1 such that a mapping f : G — Y with f(0) = 0 satisfies
the inequality

laf(@) +0f(y) +cf(2)]| < [ f(az + by + c2)[| + Ol [I” + [[ylI” + ||=[")
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for all x,y,z € G. Then there exists a unique Cauchy additive mapping
A : G — Y such that

laA(z) + bA(y) + cA(2)|| < ||Alaz + by + ¢z)|,
I72) =A@l < f”f’fll 2 2]

+2P 42
(2—27) [[alp — [bPP
for all x,y,z € G.

THEOREM 2.6. Assume that a mapping f : G — Y with f(0) =0
satisfies the functional inequality (2.4) and that the map ¢ : GXGXG —
[0, 00) satisfies the condition

o
Soox Yy oz
(I)(xayaz) = § 2j¢(27727727) <0
=1

for all z,y,z € G. Then there exists a unique Cauchy additive mapping
A: G —Y, defined by A(z) = lim,, o 2" f(5% ), such that

(2.12)  |laA(x) + bA(y) + cA(2)|| < ||[A(az + by + cz)|,
I4@) = S@)] < g 2 % 20)

+<I>(T$,O,x) +<1><0,_Tcx,x)]

Proof. Now it follows from (2.9) that

for all x,y,z € G.

|

(2.13) H2l —omf(— o H iln;lejf(;j _9i- 1f<2] 1

—cxr 2x —cx T —cr x
I 0,—.,7}
Ic\jzl; [ 2Ja 2 25 TG00 ) + 20 5 57)

for all x € G and for all nonnegative integers m and [ with m > [. It
means that for any z € G a sequence {2 f(55)} is Cauchy in Y. Since
Y is complete, the sequence {2 f(57)} converges. So one can define
a mapping A : G — Y by A(z) := limy, 0 2" f(5i) for all z € G.
Moreover, letting [ = 0 and passing the limit m — oo in (2.13), we get
the approximation (2.12) of f by A.

The remaining proof goes through by the similar argument to Theo-

rem 2.2. O
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THEOREM 2.7. Assume that a mapping f : G — Y with f(0) =0
satisfies the inequality (2.4) and that the map ¢ : G x G X G — [0, 00)
satisfies the condition

1 S
(z,y,2 ZQ—JQZ) (292,27y,272) < o0
7=0
for all z,y,z € G. Then there exists a unique Cauchy additive mapping
A:G — Y, defined by A(z) := limy, . 5= f(2"2), such that
(2.14) laA(x) + bA(y) + cA(z)]| < ||A(azx + by + cz)||,
1 cr —cx
A < [@(7 &y )
I4(@) - £@)] < 57 ey
—|—<I><—x,0,x) n <I><0, ﬁx)]
a b
for all x,y,z € G.

Proof. We get by (2.9)
m 1 +1
1) [[gf@n - gafema) < ZHQJ )= g )|
m—1 ;
1 1 —ex —2cx .
= 2|c| ; 20 [¢( a b 0 °

(2 02) o0 5

for all nonnegative integers m and [ with m > [ and all x € G. It means
that a sequence {5 f(2™x)} is Cauchy sequence in Y for all z € G.
Since Y is complete, the sequence {2}” f(2mx)} converges. So one can
define a mapping A : G — Y by A(z) = limy,— 0o 2imf(2mac) for all
x € G. Moreover, letting | = 0 and passing the limit m — oo in (2.15),
we get the functional inequality (2.14).

The remaining proof goes through by the similar argument to Theo-
rem 2.6. O

COROLLARY 2.8. Assume that there exists a nonnegative numbers §
such that a mapping f : G — Y with f(0) = 0 satisfies the inequality

laf(x) +0f(y) + cf(2)|| < |If(ax + by + cz)|[ + 6
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for all x,y,z € G. Then there exists a unique Cauchy additive mapping
A : G — Y such that

lad(z) + bA() + cAQ)|| < [ Alaz + by + c2)]),
(2.16) 1£(x) — A(@)]| < f‘j

for all x,y,z € G.

The following approximation of f by A has much simpler upper bound
than that of (2.12).

THEOREM 2.9. Assume that a mapping f : G — Y with f(0) = 0
satisfies the functional inequality (2.4) and that the map ¢ : GXGXG —
[0, 00) satisfies the condition

[e.e]

— Y
]:
for all x,y,z € G, where \ := %‘b # 0. Then there exists a unique

Cauchy additive mapping A : G — Y, defined by A(x) = limy, 0o A" f(5%)
such that

laA(z) + bA(y) + cA()| < [ Alaz + by + 2)].
JA@) - F@)] € —r® (2,7, A)

|a + b
for all x,y,z € G.

Proof. Replacing (x,y, z) by (a?,w, _a_ba?) in (2.4), we get
fo9) 1
. — < .
N s B

Now it follows from (2.17) that

e = xmpm|| < EHAJ’f(@)—Wf(jH)H
j=l

m—1
1 . T T AT
Jj+1
‘]:

for all z € G and for all nonnegative integers m and [ with m > [.
The rest of proof is similar to the corresponding part of Theorem
2.6. O
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THEOREM 2.10. Assume that a mapping f : G — Y with f(0) =0
satisfies the inequality (2.4) and that the map ¢ : G x G X G — [0, 00)
satisfies the condition

®(x,y, 2 Z,A|]¢Aﬂwy7AJ> o0

for all z,y,z € G, where \ := %4’ % 0. Then there exists a unique

. . . BT f(\"x
Cauchy additive mapping A : G — Y, defined by A(z) := lim,,—, %

such that
laA(z) + bA(y) + cA(2)|| < [[Alaz + by + cz) |,
[A(z) — f(2)]| < ® (z,z,\r)

for all x,y,z € G.

1
la + 0]

COROLLARY 2.11. Assume that there exists a nonnegative numbers
0 such that a mapping f : G — Y with f(0) = 0 satisfies the inequality

laf(x) +bf(y) +cf ()| < |[f(ax + by + cz)|| + 6

for all z,y,z € G, where 0 < ‘)\ = %71" = 1 Then there exists a unique
Cauchy additive mapping A : G — Y such that

laA(z) +bA(y) + cA(2)|| < [|A(az + by + cz)|l;

(2.18) (@) - Al < —>
[la -+ ] = el

for all x,y,z € G.

We observe that the best approximation between (2.16) and (2.18) of
f by A is determined by constants a, b, c.
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