HYERS-ULAM STABILITY OF FUNCTIONAL INEQUALITIES ASSOCIATED WITH CAUCHY MAPPINGS

Hark-Mahn Kim* and Jeong-Ha Оh**

Abstract. In this paper, we investigate the generalized HyersUlam stability of the functional inequality

$$
\|a f(x)+b f(y)+c f(z)\| \leq \| f(a x+b y+c z)) \|+\phi(x, y, z)
$$

associated with Cauchy additive mappings. As a result, we obtain that if a mapping satisfies the functional inequality with perturbing term which satisfies certain conditions then there exists a Cauchy additive mapping near the mapping.

1. Introduction

In 1940, S. M. Ulam [18] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow$ G^{\prime} exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

In 1941, D. H. Hyers [7] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

Received October 29, 2007.
2000 Mathematics Subject Classification: Primary 39B82; Secondary 39B52.
Key words and phrases: Jordan-von Neumann functional equation, generalized Hyers-Ulam stability, functional inequality.

This work was supported by the second Brain Korea 21 project in 2006.
for all $x, y \in E$. It was shown that the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

In 1978, Th. M. Rassias [15] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.

In 1991, Z. Gajda [3] following the same approach as in Th. M. Rassias [15], gave an affirmative solution to this question for $p>1$. It was shown by Z. Gajda [3], as well as by Th. M. Rassias and P. Šemrl [16] that one cannot prove a Th. M. Rassias' type theorem when $p=1$. The inequality (1.1) that was introduced for the first time by Th. M. Rassias [15] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept of stability is known as generalized Hyers-Ulam stability or Hyers-UlamRassias stability of functional equations (cf. the books of P. Czerwik [1], D. H. Hyers, G. Isac and Th. M. Rassias [8]).
P. Găvruta [6] provided a further generalization of Th. M. Rassias' Theorem. During the last two decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [9]-[14]).

Gilányi[4] and Rätz[17] showed that if f satisfies the functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\| \tag{1.3}
\end{equation*}
$$

then f satisfies the Jordan-von Neumann functional equation

$$
2 f(x)+2 f(y)=f(x y)+f\left(x y^{-1}\right)
$$

Gilányi [5] and Fechner [2] proved the generalized Hyers-Ulam stability of the functional inequality (1.3).

Now, we consider the following functional inequality (1.4) $\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\phi(x, y, z)$
which is associated with Jordan-von Neumann type Cauchy additive functional equation, where the function ϕ is a perturbing term of the functional inequality

$$
\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|
$$

The purpose of this paper is to prove that if f satisfies one of the inequality (1.4) which satisfies certain conditions, then we can find a Cauchy additive mapping near f and thus we prove the generalized Hyers-Ulam stability of the functional inequality (1.4).

2. Main results

Throughout this paper, let G be a normed vector space and Y a Banach space. First, we consider solutions of the functional inequality (1.4) with perturbing term zero.

Lemma 2.1. Let $f: G \rightarrow Y$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in G$, where $a b c \neq 0$. Then f is Cauchy additive.
Proof. By setting $z:=\frac{-a x}{c}$ and $y:=0$ in (2.1), we get

$$
\begin{equation*}
\left\|a f(x)+c f\left(\frac{-a x}{c}\right)\right\| \leq\|f(0)\|=0 \tag{2.2}
\end{equation*}
$$

for all $x \in G$. Also by letting $x:=0, z:=\frac{-b y}{c}$ in (2.1), we get

$$
\begin{equation*}
\left\|b f(y)+c f\left(\frac{-b y}{c}\right)\right\| \leq\|f(0)\|=0 \tag{2.3}
\end{equation*}
$$

for all $x \in G$. Letting $z=\frac{-a x-b y}{c}$ in (2.1), we get

$$
\left\|a f(x)+b f(y)+c f\left(\frac{-a x-b y}{c}\right)\right\| \leq\|f(0)\|=0
$$

for all $x, y \in G$. It follows from the equalities (2.2) and (2.3) that

$$
-c f\left(\frac{-a x}{c}\right)-c f\left(\frac{-b y}{c}\right)+c f\left(\frac{-a x-b y}{c}\right)=0
$$

that is, $-f(u)-f(v)+f(u+v)=0$ for all $u, v \in G$, as desired.

We recall that a subadditive function is a function $\phi: A \rightarrow B$, having a domain A and a codomain (B, \leq) that are both closed under addition, with the following property:

$$
\phi(x+y) \leq \phi(x)+\phi(y), \forall x, y \in A .
$$

Now we say that a function $\phi: A \rightarrow B$ is contractively subadditive if there exists a constant L with $0<L<1$ such that

$$
\phi(x+y) \leq L[\phi(x)+\phi(y)], \forall x, y \in A .
$$

Then ϕ satisfies the following properties $\phi(2 x) \leq 2 L \phi(x)$ and so $\phi\left(2^{n} x\right) \leq$ $(2 L)^{n} \phi(x)$. Similarly, we say that a function $\phi: A \rightarrow B$ is expansively superadditive if there exists a constant L with $0<L<1$ such that

$$
\phi(x+y) \geq \frac{1}{L}[\phi(x)+\phi(y)], \forall x, y \in A .
$$

Then ϕ satisfies the following properties $\phi(x) \leq \frac{L}{2} \phi(2 x)$ and so $\phi\left(\frac{x}{2^{n}}\right) \leq$ $\left(\frac{L}{2}\right)^{n} \phi(x)$.

Now we prove the generalized Hyers-Ulam stability of a functional inequality (1.4) associated with a Jordan-von Neumann type 3 -variable Cauchy additive functional equation.

Theorem 2.2. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{equation*}
\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\phi(x, y, z) \tag{2.4}
\end{equation*}
$$

and that the map $\phi: G \times G \times G \rightarrow[0, \infty)$ is expansively superadditive with a constant L. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$, such that
(2.5) $\|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\|$,

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{L}{2|c|(1-L)} . \\
& \\
& {\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right]}
\end{aligned}
$$

for all $x, y, z \in G$.
Proof. We observe by the expansively superadditive condition that for any $x, y, z \in G \phi\left(\frac{(x, y, z)}{2^{n}}\right) \leq\left(\frac{L}{2}\right)^{n} \phi(x, y, z)$.

Letting $y:=0$ and $z:=\frac{-a x}{c}$ in (2.4), we get

$$
\begin{equation*}
\left\|a f(x)+c f\left(\frac{-a x}{c}\right)\right\| \leq \phi\left(x, 0, \frac{-a x}{c}\right) \tag{2.6}
\end{equation*}
$$

for all $x \in G$. By letting $x:=0$ and $z:=\frac{-b y}{c}$ in (2.4), one obtains

$$
\begin{equation*}
\left\|b f(y)+c f\left(\frac{-b y}{c}\right)\right\| \leq \phi\left(0, y, \frac{-b y}{c}\right) \tag{2.7}
\end{equation*}
$$

for all $x \in G$. Replacing z by $\frac{-a x-b y}{c}$ in (2.4), we get

$$
\begin{equation*}
\left\|a f(x)+b f(y)+c f\left(\frac{-a x-b y}{c}\right)\right\| \leq \phi\left(x, y, \frac{-a x-b y}{c}\right) . \tag{2.8}
\end{equation*}
$$

It follows from (2.6), (2.7) and (2.8) that

$$
\begin{aligned}
& |c|\left\|f\left(\frac{-a x-b y}{c}\right)-f\left(\frac{-a x}{c}\right)-f\left(\frac{-b y}{c}\right)\right\| \\
& \quad \leq \phi\left(x, y, \frac{-a x-b y}{c}\right)+\phi\left(x, 0, \frac{-a x}{c}\right)+\phi\left(0, y, \frac{-b y}{c}\right),
\end{aligned}
$$

which yields the Cauchy difference

$$
\begin{align*}
& \|f(x+y)-f(x)-f(y)\| \tag{2.9}\\
& \quad \leq \frac{1}{|c|}\left[\phi\left(\frac{-c x}{a}, \frac{-c y}{b}, x+y\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c y}{b}, y\right)\right], \\
& \|f(2 x)-2 f(x)\| \\
& \quad \leq \frac{1}{|c|}\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{align*}
$$

for all $x, y \in G$. Thus it follows from (2.9) that

$$
\begin{aligned}
& \left\|2^{m} f\left(\frac{x}{2^{m}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)\right\| \leq \sum_{j=m}^{n-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{1}{2|c|} \sum_{j=m}^{n-1} 2^{j+1}\left[\phi\left(\frac{-c x}{2^{j+1} a}, \frac{-c x}{2^{j+1} b}, \frac{2 x}{2^{j+1}}\right)+\phi\left(\frac{-c x}{2^{j+1} a}, 0, \frac{x}{2^{j+1}}\right)\right. \\
& \left.\quad+\phi\left(0, \frac{-c x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right] \\
& \leq \frac{1}{2|c|} \sum_{j=m}^{m} L^{j+1}\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{aligned}
$$

for all $x \in G$ and for all nonnegative integers n and m with $n>m$. It means that a sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy sequence for all $x \in G$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define a mapping $A: G \rightarrow Y$ by $A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ for all $x \in G$. Moreover, letting $m=0$ and passing the limit $n \rightarrow \infty$ in the last inequality, we get the approximation (2.5) of f by A.

Next, we claim that the mapping $A: G \longrightarrow Y$ is Cauchy additive satisfying the functional inequality (2.1). In fact, it follows easily from (2.4) and the condition of ϕ that

$$
\begin{aligned}
& \|a A(x)+b A(y)+c A(z)\| \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|a f\left(\frac{x}{2^{n}}\right)+b f\left(\frac{y}{2^{n}}\right)+c f\left(\frac{z}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left[\left\|f\left(\frac{a x+b y+c z}{2^{n}}\right)\right\|+\phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)\right] \\
& \leq \lim _{n \rightarrow \infty}\left[2^{n}\left\|f\left(\frac{a x+b y+c z}{2^{n}}\right)\right\|+L^{n} \phi(x, y, z)\right] \\
& =\|A(a x+b y+c z)\| .
\end{aligned}
$$

Thus the mapping $A: G \longrightarrow Y$ is Cauchy additive by Lemma 2.1.
Now, let $T: G \longrightarrow Y$ be another Cauchy additive mapping satisfying (2.5). Then we obtain

$$
\begin{aligned}
& \left\|2^{n} f\left(\frac{x}{2^{n}}\right)-T(x)\right\|=2^{n}\left\|f\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\| \\
& \begin{aligned}
\leq & \frac{L 2^{n}}{2|c|(1-L)}\left[\phi\left(\frac{-c x}{2^{n} a}, \frac{-c x}{2^{n} b}, \frac{2 x}{2^{n}}\right)\right. \\
& \left.\quad+\phi\left(\frac{-c x}{2^{n} a}, 0, \frac{x}{2^{n}}\right)+\phi\left(0, \frac{-c x}{2^{n} b}, \frac{x}{2^{n}}\right)\right] \\
\leq & \frac{L^{n+1}}{2|c|(1-L)}\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right],
\end{aligned}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. So we can conclude that $A(x)=T(x)$ for all $x \in G$. This proves the uniqueness of A.

Corollary 2.3. Assume that there exist a nonnegative numbers θ and a real $p>1$ such that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality
$\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$
for all $x, y, z \in G$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$ such that

$$
\begin{aligned}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\|, \\
& \|f(x)-A(x)\| \leq \frac{\theta\|x\|^{p}}{|c|\left(2^{p}-2\right)}\left[\frac{2|c|^{p}}{|a|^{p}}+\frac{2|c|^{p}}{|b|^{p}}+2^{p}+2\right]
\end{aligned}
$$

for all $x, y, z \in G$.

Theorem 2.4. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=$ 0 satisfies the inequality (2.4) and that the map $\phi: G \times G \times G \rightarrow$ $[0, \infty)$ is contractively subadditive with a constant L. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x):=$ $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$, such that

$$
\begin{align*}
\|a A(x)+b A(y)+c A(z)\| \leq & \|A(a x+b y+c z)\| \tag{2.10}\\
\|f(x)-A(x)\| \leq \frac{1}{2|c|(1-L)} & {\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)\right.} \\
& \left.+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{align*}
$$

for all $x, y, z \in G$.
Proof. We get by (2.9)

$$
\begin{align*}
& \left\|\frac{1}{2^{m}} f\left(2^{m} x\right)-\frac{1}{2^{n}} f\left(2^{n} x\right)\right\| \leq \sum_{j=m}^{n-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \tag{2.11}\\
& \begin{array}{l}
\leq \frac{1}{|c|} \sum_{j=l}^{m-1} \frac{1}{2^{j+1}}\left[\phi\left(\frac{-2^{j} c x}{a}, \frac{-2^{j} c x}{b}, 2^{j+1} x\right)\right. \\
\left.\quad+\phi\left(\frac{-2^{j} c x}{a}, 0,2^{j} x\right)+\phi\left(0, \frac{-2^{j} c x}{b}, 2^{j} x\right)\right]
\end{array} \\
& \leq \frac{1}{2|c|} \sum_{j=m}^{n-1} L^{j}\left[\phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)+\phi\left(\frac{-c x}{a}, 0, x\right)+\phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{align*}
$$

for all nonnegative integers n, m with $n>m$ and all $x \in G$. It means that a sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy sequence for all $x \in G$. So one can define a mapping $A: G \rightarrow Y$ by $A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ for all $x \in G$. Moreover, letting $m=0$ and passing the limit $n \rightarrow \infty$ in (2.11), we get (2.10).

The remaining proof goes through by the similar argument to Theorem 2.2.

Corollary 2.5. Assume that there exist a nonnegative numbers θ, δ and a real $p<1$ such that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality
$\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$
for all $x, y, z \in G$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$ such that

$$
\begin{aligned}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\|, \\
& \|f(x)-A(x)\| \leq \frac{\theta\|x\|^{p}}{|c|\left(2-2^{p}\right)}\left[\frac{2|c|^{p}}{|a|^{p}}+\frac{2|c|^{p}}{|b|^{p}}+2^{p}+2\right]
\end{aligned}
$$

for all $x, y, z \in G$.
Theorem 2.6. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the functional inequality (2.4) and that the map $\phi: G \times G \times G \rightarrow$ $[0, \infty)$ satisfies the condition

$$
\Phi(x, y, z):=\sum_{j=1}^{\infty} 2^{j} \phi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right)<\infty
$$

for all $x, y, z \in G$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$, such that

$$
\begin{align*}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\| \tag{2.12}\\
& \begin{array}{l}
\|A(x)-f(x)\| \leq \frac{1}{2|c|}\left[\Phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)\right. \\
\\
\left.\quad+\Phi\left(\frac{-c x}{a}, 0, x\right)+\Phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{array}
\end{align*}
$$

for all $x, y, z \in G$.
Proof. Now it follows from (2.9) that

$$
\begin{align*}
& \left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l+1}^{m}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j-1} f\left(\frac{x}{2^{j-1}}\right)\right\| \tag{2.13}\\
& \leq \frac{1}{2|c|} \sum_{j=l+1}^{m} 2^{j}\left[\phi\left(\frac{-c x}{2^{j} a}, \frac{-c x}{2^{j} b}, \frac{2 x}{2^{j}}\right)+\phi\left(\frac{-c x}{2^{j} a}, 0, \frac{x}{2^{j}}\right)+\phi\left(0, \frac{-c x}{2^{j b}}, \frac{x}{2^{j}}\right)\right]
\end{align*}
$$

for all $x \in G$ and for all nonnegative integers m and l with $m>l$. It means that for any $x \in G$ a sequence $\left\{2^{m} f\left(\frac{x}{2^{m}}\right)\right\}$ is Cauchy in Y. Since Y is complete, the sequence $\left\{2^{m} f\left(\frac{x}{2^{m}}\right)\right\}$ converges. So one can define a mapping $A: G \rightarrow Y$ by $A(x):=\lim _{m \rightarrow \infty} 2^{m} f\left(\frac{x}{2^{m}}\right)$ for all $x \in G$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.13), we get the approximation (2.12) of f by A.

The remaining proof goes through by the similar argument to Theorem 2.2.

Theorem 2.7. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality (2.4) and that the map $\phi: G \times G \times G \rightarrow[0, \infty)$ satisfies the condition

$$
\Phi(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \phi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty
$$

for all $x, y, z \in G$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$, such that

$$
\begin{align*}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\| \tag{2.14}\\
& \begin{aligned}
&\|A(x)-f(x)\| \leq \frac{1}{2|c|}\left[\Phi\left(\frac{-c x}{a}, \frac{-c x}{b}, 2 x\right)\right. \\
&\left.+\Phi\left(\frac{-c x}{a}, 0, x\right)+\Phi\left(0, \frac{-c x}{b}, x\right)\right]
\end{aligned}
\end{align*}
$$

for all $x, y, z \in G$.
Proof. We get by (2.9)

$$
\begin{align*}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \tag{2.15}\\
& \leq \frac{1}{2|c|} \sum_{j=l}^{m-1} \frac{1}{2^{j}}\left[\phi\left(\frac{-2^{j} c x}{a}, \frac{-2^{j} c x}{b}, 2^{j+1} x\right)\right. \\
& \left.\quad+\phi\left(\frac{-2^{j} c x}{a}, 0,2^{j} x\right)+\phi\left(0, \frac{-2^{j} c x}{b}, 2^{j} x\right)\right]
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in G$. It means that a sequence $\left\{\frac{1}{2^{m}} f\left(2^{m} x\right)\right\}$ is Cauchy sequence in Y for all $x \in G$. Since Y is complete, the sequence $\left\{\frac{1}{2^{m}} f\left(2^{m} x\right)\right\}$ converges. So one can define a mapping $A: G \rightarrow Y$ by $A(x):=\lim _{m \rightarrow \infty} \frac{1}{2^{m}} f\left(2^{m} x\right)$ for all $x \in G$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.15), we get the functional inequality (2.14).

The remaining proof goes through by the similar argument to Theorem 2.6.

Corollary 2.8. Assume that there exists a nonnegative numbers δ such that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\delta
$$

for all $x, y, z \in G$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$ such that

$$
\begin{align*}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\|, \\
& \|f(x)-A(x)\| \leq \frac{3 \delta}{|c|} \tag{2.16}
\end{align*}
$$

for all $x, y, z \in G$.
The following approximation of f by A has much simpler upper bound than that of (2.12).

Theorem 2.9. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the functional inequality (2.4) and that the map $\phi: G \times G \times G \rightarrow$ $[0, \infty)$ satisfies the condition

$$
\Phi(x, y, z):=\sum_{j=1}^{\infty}|\lambda|^{j} \phi\left(\frac{x}{\lambda^{j}}, \frac{y}{\lambda^{j}}, \frac{z}{\lambda^{j}}\right)<\infty
$$

for all $x, y, z \in G$, where $\lambda:=\frac{-a-b}{c} \neq 0$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x)=\lim _{n \rightarrow \infty} \lambda^{n} f\left(\frac{x}{\lambda^{n}}\right)$ such that

$$
\begin{aligned}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\|, \\
& \|A(x)-f(x)\| \leq \frac{1}{|a+b|} \Phi(x, x, \lambda x)
\end{aligned}
$$

for all $x, y, z \in G$.
Proof. Replacing (x, y, z) by $\left(x, x, \frac{-a-b}{c} x\right)$ in (2.4), we get

$$
\begin{equation*}
\left\|f(x)-\frac{f(\lambda x)}{\lambda}\right\| \leq \frac{1}{|a+b|} \phi(x, x, \lambda x) . \tag{2.17}
\end{equation*}
$$

Now it follows from (2.17) that

$$
\begin{aligned}
\left\|\lambda^{l} f\left(\frac{x}{\lambda^{l}}\right)-\lambda^{m} f\left(\frac{x}{\lambda^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\lambda^{j} f\left(\frac{x}{\lambda^{j}}\right)-\lambda^{j+1} f\left(\frac{x}{\lambda^{j+1}}\right)\right\| \\
& \leq \frac{1}{|a+b|} \sum_{j=l}^{m-1}|\lambda|^{j+1} \phi\left(\frac{x}{\lambda^{j+1}}, \frac{x}{\lambda^{j+1}}, \frac{\lambda x}{\lambda^{j+1}}\right)
\end{aligned}
$$

for all $x \in G$ and for all nonnegative integers m and l with $m>l$.
The rest of proof is similar to the corresponding part of Theorem 2.6.

Theorem 2.10. Assume that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality (2.4) and that the map $\phi: G \times G \times G \rightarrow[0, \infty)$ satisfies the condition

$$
\Phi(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{|\lambda|^{j}} \phi\left(\lambda^{j} x, \lambda^{j} y, \lambda^{j} z\right)<\infty
$$

for all $x, y, z \in G$, where $\lambda:=\frac{-a-b}{c} \neq 0$. Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$, defined by $A(x):=\lim _{n \rightarrow \infty} \frac{f\left(\lambda^{n} x\right)}{\lambda^{n}}$ such that

$$
\begin{aligned}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\| \\
& \|A(x)-f(x)\| \leq \frac{1}{|a+b|} \Phi(x, x, \lambda x)
\end{aligned}
$$

for all $x, y, z \in G$.
Corollary 2.11. Assume that there exists a nonnegative numbers δ such that a mapping $f: G \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\|a f(x)+b f(y)+c f(z)\| \leq\|f(a x+b y+c z)\|+\delta
$$

for all $x, y, z \in G$, where $0<\left|\lambda:=\frac{-a-b}{c}\right| \neq 1$ Then there exists a unique Cauchy additive mapping $A: G \rightarrow Y$ such that

$$
\begin{align*}
& \|a A(x)+b A(y)+c A(z)\| \leq\|A(a x+b y+c z)\| \\
& \|f(x)-A(x)\| \leq \frac{\delta}{||a+b|-|c||} \tag{2.18}
\end{align*}
$$

for all $x, y, z \in G$.
We observe that the best approximation between (2.16) and (2.18) of f by A is determined by constants a, b, c.

References

[1] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[4] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[5] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707710.
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[9] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, J. Math. Anal. Appl. 297 (2004), 70-86.
[10] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[11] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[12] C. Park, Y. Cho and M. Han, Functional inequality associted with Jordan-von Neumann type additive functional equation, J. Inequal. Appl. 12 (2007), 1-12.
[13] C. Park and J. Cui, Generalized Stability of C*-Ternary Quadratic Mappings, Abstract and Applied Analysis, Vol. 2007(2007), Article ID 23282, 6 pages.
[14] C. Park and A. Najati, Homomorphisms and derivations in C^{*}-algebras, Abstract and Applied Analysis, Volume 2007 (2007), Article ID 80630, 12 pages.
[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[16] Th. M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[17] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
[18] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

*

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: hmkim@cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: seth92@hanmail.net

