WEAKLY LARGE SUBSYSTEMS OF S-SYSTEM

Jupil Kim* and Sungjin Kim **

ABSTRACT. The purpose of this paper is to introduce and investigate the weakly large subsystem of S-system M_S . In this study, we consider injective algebraic system and large subsystem. We also characterize weakly nonsingular congruence on S-system.

1. Introduction

Let S be a semigroup. A right S-system M_S is a set M together with a map (written multiplicatively) from $M \times S$ into M satisfying x(ab) = (xa)b for all $x \in M$ and $a, b \in S$. If one things of each element of S as inducing a unary operation on an S-system M_S , then M_S is a finitary algebra and all the notions of universal algebra are available. A nonempty subset N of an S-system M_S is S-subsystem if $NS \subset N$.

If subsystem N_S of M_S consists of a single element z, then za = z for all $a \in S$; such an element z we call fixed element of M_S . If S-system M_S contains a unique fixed element z and S has a zero element 0, then m0 = z for every $m \in M$. For m0 is clearly a fixed element of M_S . If M_S has a unique fixed element z over a semigroup S with 0, then every subsystem N_S of M_S contains z and the symbol z will be called zero of $M_S([3])$. Dually, we can define left S-system.

If S has an identity 1, the S-system M_S is unital when m1 = m for each $m \in M$. For each semigroup S we shall define S^1 by $S^1 = S \cup \{1\}$ where 1 is a symbol not in S and where multiplication on S is extened to S^1 by defining 1x = x1 = x for all $x \in S^1$. With the operation so defined, S^1 is a semigroup. Note that this definition for S^1 differs from the standard one. However, with the definition given here each S-system M_S becomes a unital S^1 -system by defining m1 = m for each $m \in M$.

Received October 29, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 20M99; Secondary 16A52.

Key words and phrases: S-system, injective, large, weakly large, weakly nonsingular.

This work was supported by Hannam University Research Fund, 2006.

We shall use the term S-system, simply, to mean "right S-system". Unless otherwise stated, all algebraic notions will be in this category. We will assume throughout this paper S will always denote a semigroup and S^1 is a semigroup with identity 1.

Let M_S and N_S be two S-systems. A mapping $f: M_S \to N_S$ such that f(ms) = f(m)s for all $m \in M$ and $s \in S$ is called an homomorphism. The usual definition for monomorphism, epimorphism and isomorphism hold. The set of all homomorphism from M_S to N_S is denoted by it $Hom_S(M, N)$.

An equivalence relation θ on M_S is a congruence relation if and only if $(a,b) \in \theta$ implies $(as,bs) \in \theta$ for all $s \in S$.

An algebra A in an equational class C is called *injective* in C if and only if for any homomorphism $f: B \to A$ and any monomorphism $h: B \to C$, where B and C belong to C, there exist a homomorphism $g: C \to A$ such that f = gh. This situation does indeed occur, and examples are provided by some very familiar equational classes, such as the class of groups, all monoids, and ring with unit, among others.([1])

S-system M_S is called weakly injective if, for every right ideal K of S and every homomorphism $\phi: K \to M$, there exists an $m \in M$ such that $\phi(k) = mk$ for all $k \in K$. Injective S-system is weakly injective, but the converse does not hold in general. It was shown by Berthiaume([2]) that, unlike the unitary R-module situation, this notion does not coincide with that of injectivity of S-systems. Berthiaume's counterexample was a semilattice considered as an S-system over itself.

An algebra B in an equational class \mathcal{C} is called an *essential extension* of an algebra $A \in \mathcal{C}$ if and only if B is an extension of A such that any homomorphism $h: B \to C$, where $C \in \mathcal{C}$, is a monomorphism whenever retraction of h in A is a monomorphism. Subalgebra N of M is *large* in M when M is an essential extension of N.

It is well known that submodule N_R is large in M_R if and only if it has nonzero intersection with every nonzero submodule of M_R . A subsystem N_S of M_S is meet-large in M_S if for each $0 \neq m \in M$ there exist $s \in S^1$ such that $0 \neq ms \in N_S$. Note that N_S is meet-large in M_S if and only if the intersection of N_S with any nonzero subsystem of M_S is always nonzero. This definition is a generalization of a corresponding concept in ring theory. The following result shows that the relationship between injectivity and essential extensions in modules.

THEOREM 1.1. ([8]). R-module M_R is injective if and only if M_R has no proper essential extension.

The following theorem due to Berthiaume([2]) guarantees the existence of minimal injective extension which is unique up to isomorphism for any S-system M_S . If N_S is subsystem of M_S and if M_S is injective then M_S is called an *injective extension* of N_S .

THEOREM 1.2. ([5]). The S-system M_S is a maximal essential extension of N_S if and only if M_S is a minimal injective extension of N_S . Every S-system M_S has such an extension which is unique up to isomorphism over M_S .

The minimal injective extension of M_S given in the above theorem 1.2 is called the *injective hull* of M_S and denoted by I(M). Note that I(M) is the injective hull of M_S if and only if M_S is large in I(M) and I(M) is injective. In [7], J.P. Kim and Y.S. Park characterize the I(M) where M_S is S-system over Clifford semigroup. The following lemma characterizes large subsystems in terms of congruences. For any S-system M_S , 1_M means identity relation of M_S .

LEMMA 1.3. ([5]). For any S-system M_S , N_S is large in M_S if and only if every congruence ρ on M_S such that $\rho \neq 1_M$ we have $\rho|_N \neq 1_N$.

2. Weakly large S-system

In general S-system M_S does not has zero, so we define the following; The definition is generalization of a corresponding concept in module. |A| denotes the cardinal number of set A.

DEFINITION 2.1. A subsystem N_S of M_S is called weakly large if for every non-fixed subsystem A_S of M_S , $|A \cap N| \ge 2$.

- 1) If M_S has unique fixed element z and S is a semigroup without zero, then we adjoin 0 on S and let $S^0 = S \cup \{0\}$. We can make M into an S^0 -system M_{S^0} by defining m0 = z for all $m \in M$. Since every subsystem N_S of M_S is also subsystem of M_{S^0} , N_S contains z.
- 2) If M_S has more than two fixed elements, then for any fixed element $z \in M_S$ take another fixed element $x \in M_S$. Since $A = \{x, z\}$ is a subsystem of M_S , $2 = |A| \ge |A \cap N| \ge 2$ and so $A \cap N = N$. Thus $z \in A \subset N$.

Hence N_S contains all fixed elements of M_S .

In fact, above definition means a subsystem N_S of M_S is weakly large if

- (1) N_S contains all fixed elements of M_S and
- (2) for any non-fixed subsystem A_S of M_S , A_S meets N_S with more than

two elements.

S-System M_S called weakly essential extension of N_S when N_S is weakly large subsystem of M_S . We can see that above definition 2.1 is equivalent to meet-large (Lopez and Ludeman [9]) if S-system M_S has a zero element. By definition, weakly large subsystem N_S of any non zero S-system M_S has at least two elements.

EXAMPLE 2.2. If S is left zero semigroup, then S_S itself is S-system and every subset of S is subsystem of S_S . So that S_S has no proper weakly large subsystem.

The set of all fixed elements of M_S will be denoted by $\mathcal{F}(M)$. Following example shows $\mathcal{F}(M)$ may be empty. If S is semigroup with 0, then $\mathcal{F}(M) \neq \emptyset$.

EXAMPLE 2.3. Infinite chain $S = \{e_1, e_2,\}$ with order $e_1 > e_2 >$,....,. has no fixed element considering S itself as S-system S_S .

LEMMA 2.4. If A_S and B_S are weakly large subsystems of M_S , then $A \cap B$ is weakly large subsystem of M_S .

Proof. Evidently $\mathcal{F}(M) \subset A \cap B$. For any subsystem N_S of M_S such that $|N| \geq 2$, $|B \cap N| \geq 2$. Since $B \cap N$ is also subsystem of M_S having more than two elements and since A_S is weakly large subsystem of $M, |A \cap (B \cap N)| \geq 2$.

THEOREM 2.5. If N_S is large subsystem of M_S , then N_S is weakly large.

Proof. Let N_S be a large subsystem of M_S and A_S be any non-fixed subsystem of M_S . Take any two distinct elements a and b in A_S and if θ is the smallest congruence of M_S containing (a, b), then by lemma 5.8([6]), the relation θ defined on M_S is

 $\theta = 1_M \cup \{(a, b), (b, a)\} \cup \{(x, y) | x = as_1, bs_1 = as_2, bs_2, \dots, as_n, bs_n = y\}.$ Since $\theta \neq 1_M$, there exist $(c, d) \in \theta$ such that $c \neq d, c, d \in N$. Since A_S is subsystem of $M_S, c, d \in A$. Thus $|A \cap N| \geq 2$

COROLLARY 2.6. ([4]) If M_S is a S-system with zero, then every large subsystem of M_S is meet-large in M_S .

COROLLARY 2.7. Let I(M) be injective hull of M_S , then M_S is weakly large in I(M).

Following example shows there is a weakly large subsystem which is not large.

EXAMPLE 2.8. Let $S = \{e_1, e_2,\}$ be infinite chain with order $e_1 > e_2 > ,....,$ the map $f: S \to S$ by $f(e_1) = f(e_2) = e_1, f(e_i) = e_{i-1}$ for i = 3, 4, ... is homomorphism and $f|_{(e_2S)}$ is one to one. but f is not one to one. So $N = e_2S = \{e_2, e_3,\}$ is not large right ideal of S_S . For any subsystem A_S of S_S such that $|A| \ge 2, e_iS \subset A$ if $e_i \in A$. Thus $|A \cap N| \ge 2$. This means N_S is weakly large subsystem of S_S .

LEMMA 2.9. If $A_S \subset B_S \subset M_S$ are S-systems, then A_S is weakly large in M_S if and only if A_S is weakly large in B_S and B_S is weakly large in M_S .

Proof. Sufficiency. Let N_S be any non-fixed subsystem of B_S . Since N_S is also subsystem of M_S , $|N \cap A| \geq 2$. Hence A_S is weakly large in B_S . Again let N_S be any subsystem of M_S . Then

$$|N \cap B| \ge |N \cap A| \ge 2$$

and so B_S is weakly large in M_S .

Necessity. Let N_S be any subsystem of M_S such that $|N| \geq 2$. Then $|B \cap N| \geq 2$ and since A_S is weakly large in B_S ,

$$|(A \cap N)| \ge |(A \cap N) \cap B| \ge 2$$

$$\mathcal{F}(M) \subset A$$
 is trivial. Thus A_S is weakly large in M_S .

The following theorem ensures that there are plenty of weakly large subsystems.

THEOREM 2.10. For any subsystem A_S of S-system M_S , let $N_S = \max \{B_S | B_S \text{ is a subsystem of } M_S \text{ such that } A \cap B = \mathcal{F}(A)\}$. Then $A \cup N$ is weakly large subsystem of M_S . In case there are no subsystem B_S of M_S such that $A \cap B = \mathcal{F}(A)$, N_S is empty set.

Proof. Let C_S be any subsystem of M_S such that $|C| \geq 2$,

- 1) If $(A \cup N) \cap C = \emptyset$, then $C \cup N = N$ by maximality of N_S . So $C \subset N$ and leads contradiction.
- 2) Assume $(A \cup N) \cap C = \{a\}$, then a is fixed element of M_S .
- 2)-1 If $a \in A$, then $a \in A \cap N$. Hence $A \cap (C \cup N) = A \cap N = \mathcal{F}(A)$ and $C \subset N$ also contradict
- 2)-2 If $a \in N-A$, then $A \cap (N \cup C) = \mathcal{F}(A)$ and also $C \subset N$ leads contradiction.

Evidently N_S contains all fixed elements of M_S .

THEOREM 2.11. Let M_S and N_S are S-systems and $f \in Hom_S(M, N)$. If A_S is weakly large subsystem of N_S , then $f^{-1}(A)$ is weakly large subsystem of M_S .

Proof. We can prove easily that if $z \in \mathcal{F}(M)$, then f(z) is also fixed element of N_S . By definition of weakly large, $f(z) \in A$ and so $z \in f^{-1}(A)$. Let B_S be any subsystem of M_S more than two elements. If $f^{-1}(A) \cap B = \emptyset$, then $f(B) \cap A = \emptyset$.

- 1) If $f(B) = \{a\}$ is singleton, since f(B) is subsystem of N_S , a is fixed element of N_S . And so from $f(B) \subset A, B \subset f^{-1}(A), |f^{-1}(A) \cap B| = |B| \ge 2$
- 2) If f(B) is not singleton, then from $|f(B) \cap A| \ge 2$ we can take $c, d \in f(B) \cap A, c \ne d$. Let f(a) = c, f(b) = d, then $a \ne b$ and $a, b \in f^{-1}(A) \cap B$. Thus $|f^{-1}(A) \cap B| \ge 2$

COROLLARY 2.12. If N_S is a weakly large subsystem of M_S , then $m^{-1}N = \{s \in S | ms \in N\}$ is weakly large subsystem of S_S for all $m \in M$.

Proof. Let $f: S \to M$ by f(s) = ms then f is homomorphism and $f^{-1}(N) = \{s \in S | ms \in N\} = m^{-1}N$.

A subsystem N_S of M_S is dense in M_S if and only if $a \neq b, m \in M$, there exist $s \in S^1$ such that $as \neq bs, ms \in N$. We can prove easily that dense subsystem of M_S is meet-large. However, following example shows the converse is false.

EXAMPLE 2.13. $S = \{0, a, b, 1\}$ with order 0 < a < b < 1 is semilattice. The ideal $N_S = \{0, a, b\}$ is clearly weakly large. but $b \neq 1, 1 \in S$ and for any non identity x of S, bx = x. So N_S is not dense subsystem of S_S .

But for the map $f: S \to S$ by f(1) = f(b) = b, f(a) = a, f(0) = 0, $f|_N$ is one to one. Therefore N_S is not large subsystem of S_S .

THEOREM 2.14. If N_S is dense subsystem of M_S , then N_S is weakly large subsystem of M_S

Proof. If z is fixed element of M_S , then z=zs for all $s \in S$. So $z \in N$. Let A_S be any non-fixed subsystem of M_S . Take $a \neq b$ in $A, a \in M$, then there exist $s_1 \in S^1$ such that $as_1 \neq bs_1, as_1 \in N$. Again for $as_1 \neq bs_1, bs_1 \in M$, there exist $s_2 \in S^1$ such that $as_1s_2 \neq bs_1s_2, bs_1s_2 \in N$. Since $as_1 \in N, as_1s_2 \in N$, and since $a, b \in A, as_1s_2, bs_1s_2 \in A$. We have $|N \cap A| \geq 2$.

The class of all weakly large subsystem of S-system M_S will be denoted by W(M). The class is closed under finite intersections

DEFINITION 2.15. The relation $\psi_S(M) = \{(a,b) \in M \times M | \text{ there exist } I \in \mathcal{W}(S) \text{ such that } ax = bx \text{ for all } x \in I\}$ is called weakly singular congruence of M_S

It is easily seen from the properties noted above that $\psi_S(M)$ is a congruence on M_S . If S is left zero semigroup with 1, then weakly singular congruence of any S-system M_S is 1_M . We call M_S is weakly nonsingular if $\psi_S(M) = 1_M$.

Theorem 2.16. M_S is weakly nonsingular if and only if for any relation R of M_S

 $r(R) = \{x \in S | mx = nx \text{ for all } (m,n) \in R\}$ has no proper weakly essential extension on S^1_S .

Proof. "only if"; Let R be any relation of $M_S, r(R)$ be weakly large subsystem of some right ideal I of S^1 . For any $u \in I$ if we define $f \in Hom(S,I)$ by f(x) = ux, then $f^{-1}(r(R)) \in \mathcal{W}(S)$ by theorem 2.3. For any $(m,n) \in R, t \in f^{-1}(r(R)), f(t) \in r(R)$ and so mut = nut. Thus $(mu,nu) \in \psi_S(M)$. By hypothesis, we have mu = nu. Therefore $u \in r(R)$.

"if"; Let $(a,b) \in \psi_S(M)$. Then there exist some $I \in \mathcal{W}(S)$ such that ax = bx for all $x \in I$. For singleton relation $R = \{(a,b)\}$ of $M, I \subset r(R) = \{x \in S | ax = bx\}$. Since $I \in \mathcal{W}(S)$, by lemma 2.2 $r(R) \in \mathcal{W}(S)$. Since $\mathcal{W}(S) \subset \mathcal{W}(S^1)$ and r(R) is weakly large subsystem of S_S^1 , $r(R) = S^1$. Thus ax = bx for all $x \in S^1$ and so a = b.

It is well known that S-system M_S is nonsingular if and only if every meet-large subsystem of M_S is dense.

THEOREM 2.17. If M_S is weakly non-singular S-systems, then every weakly large subsystem of M_S is large in M_S .

Proof. Let A be weakly large subsystem of M_S . For any subsystem of B_S , and any $f \in Hom_S(M,B)$ such that $f|_A$ is one to one. Suppose $f(a) = f(b), a, b \in M$. Let $N = a^{-1}A \cap b^{-1}A = \{x \in S | ax \in A \text{ and } bx \in A\}$. Then by lemma 2.1, N_S is weakly large right ideal of S_S and f(as) = f(bs) for all $s \in N$. Since $as, bs \in A$ for all $s \in N$ and $f|_A$ is one to one, as = bs and $(a,b) \in \psi_S(M)$. From M_S is weakly non-singular we have a = b,

THEOREM 2.18. If M_S is weakly non-singular, weakly injective, then M_S is injective.

Proof. Let B_S be any S-system and A_S be a subsystem of B_S . Let $f \in Hom_S(A, M), I(M)$ be injective hull of M_S . Since M_S is large in I(M), by theorem 2.5. M_S is weakly large in I(M). Since I(M) is injective, there exist $h \in Hom_S(B, I(M))$ such that $h|_A = f$. We claim that $h(B) \subset M$. Let $b \in B$ and let h(b) = c, then $c^{-1}M = \{s \in S | cs \in M\}$ is weakly large. the function $g : c^{-1}M \to M$ by g(x) = cx is homomorphism and since M_S is weakly injective, there exist $m \in M$ such that g(x) = mx for all $x \in c^{-1}M$. Thus cx = mx for all $x \in c^{-1}M$. And since $c^{-1}M \in \mathcal{W}(S)$, we have $(c, m) \in \psi_S(M) = 1_M$. Thus $c = m \in M$.

References

- [1] B. Banashewski, An introduction to universal algebra, Lecture note given at the I.I.T., Kanpur (1972),
- [2] P. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull. 10 (1967), 261-273.
- [3] A. H. Clifford and G. B. Preston, *Algebraic Theory of Semigroups*, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., Vol II (1967).
- [4] E. H. Feller and R. L. Gantos, *Indecomposable and injective S-systems with zero*, Math. Nachr. **21** (1969), 37-48.
- [5] C. V. Hinkle Jr, The extended centralizer of an S-set, Pacific Jour. Math. 53 (1974), no. 1, 163-170.
- [6] J. M. Howie, An introduction to semigroup theory, Academic Press, (1976).
- [7] J. P. Kim and Y. S. Park, Injective hulls of S-systems over a Clifford semigroup, Semigroup Forum Vol. 43 (1991), 19-24
- [8] J. Lambek, Lectures on rings and modules, Blaisdell, (1963)
- [9] A. M. Lopez, Jr. and J. K. Luedeman, The Bicommutator of the injective hull of a nonsingular semigroup, Semigroup Forum 12 (1976), 71-77.

*

Department of Mathematics Hannam University Daejeon 306-791, Republic of Korea *E-mail*: jpkim@hnu.ac.kr

**

Department of Mathematics Hannam University Daejeon 306-791, Republic of Korea