JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 4, December 2007

ON T-FUZZY $M\Gamma$ -SUBGROUPS OF $M\Gamma$ -GROUPS

Jong Geol Lee* and Kyung Ho Kim^{**}

ABSTRACT. In this paper, we introduce the notion of T-fuzzy $\mathcal{M}\Gamma$ subgroup of $\mathcal{M}\Gamma$ -group, and give its characterization.

1. Introduction

The notion of fuzzy subsets was formulated by Zadeh [10], and since then fuzzy subsets have been applied to various branches of Mathematics and computer science. Using this concept, Chang [4] generalized some of the basic concepts of general topology, and Rosenfeld [7] applied it to the theory of groupoids and groups, and many researchers [4, 5] applied the concept of fuzzy sets to the elementary theory of Γ -rings. In [2], Booth introduced the concept of Γ -near-rings which is due to Satyanarayana [8]. Also Booth and Groenewald [3] studied radical theory of a Γ -near-ring, and introduced the notion of $\mathcal{M}\Gamma$ -group. In this paper, we introduce the notion of T-fuzzy $\mathcal{M}\Gamma$ -subgroup of $\mathcal{M}\Gamma$ -group, and give its characterization.

2. Preliminaries

All near-rings considered in this paper will be right distributive. A Γ -near-ring is a triple $(M, +, \Gamma)$ where:

- (i) (M, +) is a (not necessarily abelian) group;
- (ii) Γ is a nonempty set of binary operators on M such that, for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring;
- (iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$. If, in addition, it holds that

2000 Mathematics Subject Classification: 06F35, 03G25, 03E72.

Received October 8, 2007.

Key words and phrases: $M\Gamma$ -group, T-fuzzy $M\Gamma$ -subgroup, $M\Gamma$ -group homomorphism, idempotent.

^{*}The research on which this paper is based was supported by a grant from Chungju National University Research Foundation, 2007.

(iv) $x\alpha 0 = 0$ for all $x \in M$;

then the Γ -near-ring M is said to be zero symmetric.

DEFINITION 2.1. [3] Let G be an additive group. If, for all $a, b \in M$, $\alpha, \beta \in \Gamma$ and $x \in G$ it holds that

- (i) $a\alpha x \in G$;
- (ii) $a\alpha(b\beta x) = (a\alpha b)\beta x;$
- (iii) $(a+b)\alpha x = a\alpha x + b\alpha x$

then G is called an $\mathcal{M}\Gamma$ -group.

In what follows, let M denotes the Γ -near-ring, and G denotes the $\mathcal{M}\Gamma$ -group unless otherwise specified.

DEFINITION 2.2. [3] A subgroup K of G for which $a\alpha k \in K$ for all $a \in M, \alpha \in \Gamma, k \in K$, is called an $\mathcal{M}\Gamma$ -subgroup of G.

We now review some fuzzy logic concepts. A fuzzy set in a set G is a function $\mu: G \to [0, 1]$. We shall use the notation $U(\mu; t)$, called a *level* subset of μ , for $\{x \in G | \mu(x) \ge t\}$ where $t \in [0, 1]$.

A fuzzy set μ in G is called a *fuzzy* $\mathcal{M}\Gamma$ -subgroup of G if

(i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in G$.

(ii) $\mu(a\alpha y) \ge \mu(y)$ for all $a \in M, y \in G$ and $\alpha \in \Gamma$.

DEFINITION 2.3. [1] By a *t*-norm T, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

- (T1) T(x,1) = x,
- (T2) $T(x,y) \leq T(x,z)$ if $y \leq z$,

(T3)
$$T(x,y) = T(y,x),$$

(T4)
$$T(x, T(y, z)) = T(T(x, y), z),$$

for all $x, y, z \in [0, 1]$.

PROPOSITION 2.4. Every t-norm T has a useful property:

$$T(\alpha,\beta) \le \min(\alpha,\beta)$$

for all $\alpha, \beta \in [0, 1]$.

For a *t*-norm *T* on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] \mid T(\alpha, \alpha) = \alpha\}.$

DEFINITION 2.5. Let T be a t-norm. A fuzzy set μ in G is said to satisfy *idempotent property with respect to* T if $\text{Im}(\mu) \subseteq \Delta_T$.

3. Fuzzy $M\Gamma$ -subgroups of $M\Gamma$ -groups

DEFINITION 3.1. Let T be an t-norm. A fuzzy set μ in G is called an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G if

(F1) $\mu(x-y) \ge T(\mu(x), \mu(y))$ for all $x, y \in G$.

(F2) $\mu(a\alpha y) \ge \mu(y)$ for all $a \in M, y \in G$ and $\alpha \in \Gamma$.

PROPOSITION 3.2. Let T be a t-norm. If μ is an idempotent T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G, then we have $\mu(0) \geq \mu(x)$ for all $x \in G$.

Proof. For every $x \in G$, we have

$$\mu(0) = \mu(x - x) \ge T(\mu(x), \mu(x)) = \mu(x).$$

This completes the proof.

PROPOSITION 3.3. If μ is an idempotent T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G, then the set

$$G^{\omega} = \{ x \in G \mid \mu(x) \ge \mu(\omega) \}$$

is an $\mathcal{M}\Gamma$ -subgroup of G.

Proof. Let $x, y \in G^{\omega}$. Then $\mu(x) \ge \mu(\omega)$ and $\mu(y) \ge \mu(\omega)$. Since μ is an *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G*, it follows that

$$\mu(x-y) \ge T(\mu(x), \mu(y)) \ge T(\mu(\omega), \mu(\omega)) = \mu(\omega).$$

Now let $a \in M, \alpha \in \Gamma$ and $k \in G^{\omega}$. Then $\mu(a\alpha k) \ge \mu(k) \ge \mu(\omega)$. Thus, we have $\mu(x - y) \ge \mu(\omega)$ and $\mu(a\alpha k) \ge \mu(\omega)$, that is., $x - y \in G^{\omega}$ and $a\alpha k \in G^{\omega}$. This completes the proof.

COROLLARY 3.4. Let T be a t-norm. If μ is an idempotent T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G, then the set

$$\mu_G = \{ x \in G \mid \mu(x) = \mu(0) \}$$

is an $\mathcal{M}\Gamma$ -subgroup of G.

Proof. From the Proposition 3.2, $\mu_G = \{x \in G \mid \mu(x) = \mu(0)\} = \{x \in G \mid \mu(x) \geq \mu(0)\}$, hence μ_G is an $\mathcal{M}\Gamma$ -subgroup of G from the Proposition 3.4.

DEFINITION 3.5. Let G and G' be $\mathcal{M}\Gamma$ -groups. A map $\theta : G \to G'$ is called a $\mathcal{M}\Gamma$ -group homomorphism if $\theta(x + y) = \theta(x) + \theta(y)$ and $\theta(a\alpha x) = a\alpha\theta(x)$ for all $a \in M, \alpha \in \Gamma$ and $x \in G$.

DEFINITION 3.6. Let $\theta : G \to G'$ be an $\mathcal{M}\Gamma$ -group homomorphism of $\mathcal{M}\Gamma$ -groups. For any fuzzy set μ in G', we define a fuzzy set μ^{θ} in G by $\mu^{\theta}(x) := \mu(\theta(x))$ for all $x \in G$.

441

PROPOSITION 3.7. Let $\theta : G \to G'$ be an $\mathcal{M}\Gamma$ -group homomorphism of $\mathcal{M}\Gamma$ -groups. If μ is an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G', then μ^{θ} is an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G.

Proof. For any $x, y \in G$, we have

$$\begin{aligned} \mu^{\theta}(x-y) &= \mu(\theta(x-y)) = \mu(\theta(x) - \theta(y)) \\ &\geq T(\mu(\theta(x)), \mu(\theta(y))) = T(\mu^{\theta}(x), \mu^{\theta}(y)) \end{aligned}$$

Let $a \in M, y \in G$ and $\alpha \in \Gamma$. Then

$$\mu^{\theta}(x\alpha y) = \mu(\theta(x\alpha y)) = \mu(a\alpha\theta(y)) \ge \mu(\theta(y)) = \mu^{\theta}(y).$$

This completes the proof.

PROPOSITION 3.8. Let I be an $\mathcal{M}\Gamma$ -subgroup of G and let μ be a fuzzy set in G defined by

$$\mu(x) := \begin{cases} \alpha & \text{if } x \in I, \\ \beta & \text{otherwise }, \end{cases}$$

for all $x \in G$, where $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Then μ is a *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G* where $T(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$ for all $\alpha, \beta \in [0, 1]$.

Proof. Let $x, y \in G$. If $x, y \in I$, then

$$T(\mu(x), \mu(y)) = T(\alpha, \alpha) = \max(2\alpha - 1, 0)$$
$$= \begin{cases} 2\alpha & \text{if } \alpha \ge \frac{1}{2}, \\ \beta & \text{if } \alpha < \frac{1}{2}, \end{cases}$$
$$\le \alpha = \mu(x - y),$$

and for all $a \in M$ and $\alpha \in \Gamma$, we have $\mu(a\alpha y) = \mu(y) = \alpha$. If $x \in I$ and $y \notin I$ (or, $x \notin I$ and $y \in I$), then

$$T(\mu(x), \mu(y)) = T(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$$
$$= \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta \ge \frac{1}{2}, \\ \beta & \text{otherwise }, \end{cases}$$
$$\leq \beta = \mu(x - y),$$

and for all $a \in M$ and $\alpha \in \Gamma$, we have $\mu(a\alpha y) \ge \beta = \mu(y)$. If $x \notin I$ and $y \notin I$, then

442

On T-fuzzy $\mathcal{M}\Gamma$ -subgroups of $\mathcal{M}\Gamma$ -groups

$$T(\mu(x), \mu(y)) = T(\beta, \beta) = \max(2\beta - 1, 0)$$
$$= \begin{cases} 2\beta - 1 & \text{if } \beta \ge \frac{1}{2}, \\ 0 & \text{otherwise }, \end{cases}$$
$$\le \beta = \mu(x - y),$$

and for all $a \in M$ and $\alpha \in \Gamma$, we have $\mu(a\alpha y) \geq \beta = \mu(y)$. Hence μ is an *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G*.

For any subset I of $\mathcal{M}\Gamma$ -group G, \mathcal{X}_I denote the characteristic function of I.

COROLLARY 3.9. Let $I \subseteq G$. Then I is an $\mathcal{M}\Gamma$ -subgroup of G if and only if \mathcal{X}_I is an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G.

Proof. Let I be an $\mathcal{M}\Gamma$ -subgroup of G. Then it is easy to show that \mathcal{X}_I is an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G. In fact, let $x, y \in I$, and so $x - y \in I$. Hence we have $\mathcal{X}_I(x - y) = 1 = T(\mathcal{X}_I(x), \mathcal{X}_I(y)) = T(1, 1)$. Assume that $x \in I$ and $y \notin I$ (or $x \notin I$ and $y \in I$). Then $\mathcal{X}_I(x) = 1 > 0 =$ $\mathcal{X}_I(y)$ (or $\mathcal{X}_I(x) = 0 < 1 = \mathcal{X}_I(y)$). It follows that $\mathcal{X}_I(x - y) \ge 0 =$ $T(\mathcal{X}_I(x), \mathcal{X}_I(y)) = T(1, 0) = 0$. Now let $a \in M, \alpha \in \Gamma$. If $y \in I$, then we have $a\alpha y \in I$. Hence $\mathcal{X}_I(a\alpha y) = 1 = \mathcal{X}_I(y)$. If $y \notin I$, then $\mathcal{X}_I(a\alpha y) \ge$ $\mathcal{X}_I(y) = 0$. Conversely, Let \mathcal{X}_I be an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G. Let $x, y \in I$. Then we have $\mathcal{X}_I(x - y) \ge T(\mathcal{X}_I(x), \mathcal{X}_I(y)) = T(1, 1) = 1$, and so $x - y \in I$. Now let $a \in M, \alpha \in \Gamma$ and $y \in I$. Hence $\mathcal{X}_I(a\alpha y) \ge$ $\mathcal{X}_I(y) = 1$, and so $a\alpha y \in I$.

THEOREM 3.10. Let T be a t-norm. Then every idempotent T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G is a fuzzy ideal of G.

Proof. Let μ be an idempotent *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G*. Then $\mu(x-y) \geq T(\mu(x), \mu(y))$ for all $x, y \in G$. Since μ satisfies the idempotent property, we have

$$\min(\mu(x), \mu(y)) = T(\min(\mu(x), \mu(y)), \min(\mu(x), \mu(x))) \\ \le T(\mu(x), \mu(y)) \le \min(\mu(x), \mu(y)).$$

It follows that

$$\mu(x-y) \ge T(\mu(x), \mu(y)) = \min(\mu(x), \mu(y))$$

so that μ is a fuzzy ideal of G. ending the proof.

THEOREM 3.11. Let μ be an *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G* and let $\alpha \in \Gamma$ be such that that $T(\alpha, \alpha) = \alpha$. Then $U(\mu; \alpha)$ is either empty or an $\mathcal{M}\Gamma$ -subgroup of *G* for all $x \in G$.

443

Jong Geol Lee and Kyung Ho Kim

Proof. Let $x, y \in U(\mu; \alpha)$. Then we have $\mu(x) \ge \alpha$ and $\mu(y) \ge \alpha$, and so

$$\mu(x-y) \ge T(\mu(x), \mu(y)) \ge T(\alpha, \alpha) = \alpha,$$

which implies that $x - y \in U(\mu; \alpha)$. Now let $a \in M, y \in U(\mu; \alpha)$ and $\gamma \in \Gamma$. Then we have $\mu(a\gamma y) \geq \mu(y) \geq \alpha$, so $a\gamma y \in U(\mu; \alpha)$. Hence $U(\mu; \alpha)$ is an $\mathcal{M}\Gamma$ -subgroup of G. ending the proof. \Box

Since T(1,1) = 1, we have the following corollary.

COROLLARY 3.12. If μ is an *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of *G*, then $U(\mu; 1)$ is either empty or an $\mathcal{M}\Gamma$ -subgroup of *G*.

For a family $\{\mu_{\alpha} \mid \alpha \in \Lambda\}$ fuzzy sets in G, define the join $\bigvee_{\alpha \in \Lambda} \mu_{\alpha}$ and the meet $\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}$ as follows:

$$(\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(x) = \sup\{\mu_{\alpha}(x) \mid \alpha \in \Lambda\}, \quad (\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(x) = \inf\{\mu_{\alpha}(x) \mid \alpha \in \Lambda\}.$$

for all $x \in G$, where Λ is any index set.

THEOREM 3.13. The family of T-fuzzy $\mathcal{M}\Gamma$ -subgroups of G is a completely distributive lattice with respect to meet " \wedge " and join " \vee ".

Proof. Since [0, 1] is a completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient to show that $\bigvee_{\alpha \in \Lambda} \mu_{\alpha}$ and $\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}$ are *T*-fuzzy $\mathcal{M}\Gamma$ -subgroups of *G* for a family of *T*-fuzzy $\mathcal{M}\Gamma$ -subgroups $\{\mu_{\alpha} \mid \alpha \in \Lambda\}$. For any $x, y \in G$, we have

$$(\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(x - y) = \sup\{\mu_{\alpha}(x - y) \mid \alpha \in \Lambda\}$$

$$\geq \sup\{T(\mu_{\alpha}(x), \mu_{\alpha}(y)) \mid \alpha \in \Lambda\}$$

$$\geq T(\sup\{\mu_{\alpha}(x) \mid \alpha \in \Lambda\}, \sup\{\mu_{\alpha}(y) \mid \alpha \in \Lambda\})$$

$$= T((\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(x), (\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(y)),$$

$$(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(x - y) = \inf \{ \mu_{\alpha}(x - y) \mid \alpha \in \Lambda \}$$

$$\geq \inf \{ T(\mu_{\alpha}(x), \mu_{\alpha}(y)) \mid \alpha \in \Lambda \}$$

$$\geq T(\inf \{ \mu_{\alpha}(x) \mid \alpha \in \Lambda \}, \inf \{ \mu_{\alpha}(y) \mid \alpha \in \Lambda \})$$

$$= T((\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(x), (\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(y)).$$

Now let $a \in M, y \in G$ and $\alpha \in \Gamma$. Then

$$(\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(a\alpha y) = \sup\{\mu_{\alpha}(a\alpha y) \mid \alpha \in \Lambda\}$$

$$\geq \sup\{\mu_{\alpha}(y) \mid \alpha \in \Lambda\}$$

$$= (\bigvee_{\alpha \in \Lambda} \mu_{\alpha})(y),$$

$$(\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(x\alpha y) = \inf\{\mu_{\alpha}(x\alpha y) \mid \alpha \in \Lambda\}$$

$$\geq \inf\{\mu_{\alpha}(y) \mid \alpha \in \Lambda\}$$

$$= (\bigwedge_{\alpha \in \Lambda} \mu_{\alpha})(y),$$

Hence $\bigvee_{\alpha \in \Lambda} \mu_{\alpha}$ and $\bigwedge_{\alpha \in \Lambda} \mu_{\alpha}$ are *T*-fuzzy $\mathcal{M}\Gamma$ -subgroups of *G*, completing the proof.

THEOREM 3.14. Let T be a t-norm and let μ be an idempotent fuzzy set in G. If each non-empty upper level set $U(\mu; \alpha)$ of μ is an $\mathcal{M}\Gamma$ subgroup of G, then μ is an idempotent T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G.

Proof. Suppose each non-empty upper level set $U(\mu; \alpha)$ of μ is an $\mathcal{M}\Gamma$ -subgroup of G. Then we first show that

 $\mu(x-y) \ge \min(\mu(x), \mu(y))$ for all $x, y \in G$.

In fact, if not then there exist $x_0, y_0 \in G$ such that $\mu(x_0 - y_0) < \min(\mu(x_0), \mu(y_0))$. Taking

$$\alpha_0 := \frac{1}{2}(\mu(x_0 - y_0) + \min(\mu(x_0), \mu(y_0))),$$

we get $\mu(x_0 - y_0) < \alpha_0 < \min(\mu(x_0), \mu(y_0))$ and thus $x_0, y_0 \in U(\mu; \alpha)$ and $x_0 - y_0 \notin U(\mu; \alpha)$. This is a contradiction. Hence

$$\mu(x-y) \ge \min(\mu(x), \mu(y)) \ge T(\mu(x), \mu(y))$$

for all $x, y \in G$. Now if (F2) is not true, then $\mu(a_0\gamma y_0) < \mu(y_0)$ for some $a_0 \in M, y_0 \in G$ and $\gamma \in \Gamma$. Taking $s_1 := \frac{1}{2}(\mu(a_0\gamma y_0) + \mu(y_0))$, then $0 \leq s_1 < \mu(y_0)$ and $\mu(a_0\gamma y_0) < s_1$. Hence $y_0 \in U(\mu; s_1)$ and $a_0\gamma y_0 \notin U(\mu; s_1)$, a contradiction. This completes the proof. \Box

PROPOSITION 3.15. Let T be a t-norm and let μ be a fuzzy set in G with $Im(\mu) = \{\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n\}$ where $\alpha_i < \alpha_j$ whenever i > j. Suppose that there exists a chain of $\mathcal{M}\Gamma$ -subgroups of G:

$$G_0 \subset G_1 \subset \cdots \subset G_n = G$$

such that $\mu(\tilde{G}_k) = \alpha_k$, where $\tilde{G}_k = G_k \setminus G_{k-1}$ and $G_1 = 0$ for $k = 0, 1, \dots, n$. Then μ is an T-fuzzy $\mathcal{M}\Gamma$ -subgroup of G.

Proof. Let $x, y \in G$. If x and y belong to the same \tilde{G}_k , then $\mu(x) = \mu(y) = \alpha_k$ and $x - y \in G_k$. Hence

$$\mu(x-y) \ge \alpha_k = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y)).$$

Let $x \in \tilde{G}_i$ and $y \in \tilde{G}_j$ for every $i \neq j$. Without loss of generality we may assume that i > j. Then $\mu(x) = \alpha_i < \alpha_j = \mu(y)$ and $x - y \in G_i$. It follows that

$$\mu(x - y) \ge \alpha_i = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y)\}.$$

Now let $y \in G$. Then there exists G_k such that $y \in \tilde{G}_k$ for some $k \in \{0, 1, 2, \cdots\}$. For any $a \in M, y \in \tilde{G}_k$ and $\alpha \in \Gamma$, we have $a\alpha y \in G_k$ and so $\mu(a\alpha y) \geq \alpha_k \geq \mu(y)$. Hence μ is an *T*-fuzzy $\mathcal{M}\Gamma$ -subgroup of G.

References

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
- [2] G. L. Booth, A note on Γ -near-rings, Studia Sci. Math. Hungar. 23 (1988), 471-475.
- [3] G. L. Booth, On radicals of gamma-near-rings, Math. Japon. 35 (1990), 417-425.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968).
- [5] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. and Appl. 84 (1981), 264-269.
- [6] G. Pilz, Near-rings, North Holland, Amsterdam, (1983).
- [7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [8] Bh. Satyanarayana, Contributions to near-ring theory, Doctoral thesis, Nagarjuna Univ. (1984).
- [9] Y. Yu, J. N. Mordeson and S. C. Cheng, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994).
- [10] L. A. Zadeh, *Fuzzy sets*, Inform. and Control. 8 (1965), 338-353.

*

Department of Mathematics Chungju National University Chungju 380-702, Republic of Korea *E-mail*: jglee@cjnu.ac.kr

**

Department of Mathematics Chungju National University Chungju 380-702, Republic of Korea *E-mail*: ghkim@cjnu.ac.kr