JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 4, December 2007

A NOTE ON CYCLOTOMIC UNITS IN FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. Let $\mathbb{A} = \mathbb{F}_q[T]$ and $k = \mathbb{F}_q(T)$. Assume q is odd, and fix a prime divisor ℓ of q-1. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ . In this paper we define a subgroup \widetilde{C}_F of \mathcal{O}_F^* which is generated by \mathbb{F}_q^* and $\{\eta^{\tau^i} : 0 \leq i \leq \ell-1\}$ in $F = k(\sqrt[\ell]{P})$ and calculate the unit-index $[\mathcal{O}_F^* : \widetilde{C}_F] = \ell^{\ell-2}h(\mathcal{O}_F)$. This is a generalization of [3, Theorem 16.15].

1. Introduction and statement of result

Let $\mathbb{A} = \mathbb{F}_q[T]$ and $k = \mathbb{F}_q(T)$. Assume q is odd, and fix a prime divisor ℓ of q - 1. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ . Let K_P be the P-th cyclotomic function field, which is a finite cyclic extension of k. The Galois group $G_P :=$ $Gal(K_P/k)$ is isomorphic to $(\mathbb{A}/P\mathbb{A})^*$. For any $A \in (\mathbb{A}/P\mathbb{A})^*$, write σ_A for the automorphism in G_P characterized by $\sigma_A(\lambda) = \rho_A(\lambda)$ for any P-torsion point λ of the Carlitz module ρ . We write $\lambda^A := \rho_A(\lambda)$ for simplicity. Let K_P^+ be the maximal real subfield of K_P , so that $Gal(K_P/K_P^+) \cong \mathbb{F}_q^*$. Set

$$\mathcal{M}_P := \{ 0 \neq A \in \mathbb{A} : \deg(A) < \deg(P) \}$$

and

$$\mathcal{M}_P^+ := \{ A \in \mathcal{M}_P : A \text{ is a monic} \}.$$

Then, as in the proof of Lemma 16.13 in [3], we have

$$P = (-1)^{\frac{q^d - 1}{q - 1}} \Big(\prod_{A \in \mathcal{M}_P^+} \lambda_P^A\Big)^{q - 1},$$

Received October 1, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R29, 11R58.

Key words and phrases: cyclotomic units, unit index.

This work was supported by the research grant of the Chungbuk National University in 2007.

Hwanyup Jung

where λ_P is a primitive P-torsion point of the Carlitz module ρ . We fix

$$\sqrt[\ell]{P} := (-1)^{\frac{q^d - 1}{\ell(q-1)}} \Big(\prod_{A \in \mathcal{M}_P^+} \lambda_P^A\Big)^{\frac{q-1}{\ell}}.$$

Let $F = k(\sqrt[\ell]{P})$, which is the unique cyclic extension of k of degree ℓ inside K_P^+ (see Lemma 2.1), and \mathcal{O}_F the integral closure of \mathbb{A} in F. For any polynomial $A \in \mathbb{A}$ with $P \nmid A$, write \overline{A} for the unique element of \mathcal{M}_P such that $A \equiv \overline{A} \mod P$ and $\operatorname{sgn}_P(A)$ for the leading coefficient of \overline{A} . Also, $(A/P)_\ell$ denotes the unique element of \mathbb{F}_q^* such that

$$A^{\frac{q^d-1}{\ell}} \equiv (A/P)_{\ell} \bmod P.$$

Let \mathcal{R} be any complete set of representatives of $(\mathbb{A}/P\mathbb{A})^*/\mathbb{F}_q^*$. Define

$$\eta := \frac{\left(\prod_{A \in \mathcal{R}_0} \lambda_P^A / sgn_P(A)\lambda_P\right)^{\ell}}{\prod_{A \in \mathcal{R}} \lambda_P^A / sgn_P(A)\lambda_P},$$

where $\mathcal{R}_0 = \{A \in \mathcal{R} : (A/P)_{\ell} = 1\}$. This unit η is independent of the choice of \mathcal{R} and is an element of F (see Lemma 2.3). Let $\widetilde{\mathcal{C}}_F$ be the subgroup of \mathcal{O}_F^* generated by \mathbb{F}_q^* and $\{\eta^{\tau^i} : 0 \leq i \leq \ell - 1\}$, where τ is a generator of Gal(F/k).

The main result of this paper is the following theorem.

THEOREM 1.1. Let ℓ be a prime divisor of q-1. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ . Then $\{\eta^{\tau^i}: 0 \leq i \leq \ell-2\}$ forms a basis for the non-torsion part of $\widetilde{\mathcal{C}}_F$ and the index of $\widetilde{\mathcal{C}}_F$ in the full unit group \mathcal{O}_F^* is given by

$$[\mathcal{O}_F^*:\widetilde{\mathcal{C}}_F] = \ell^{\ell-2} \cdot h(\mathcal{O}_F),$$

where $h(\mathcal{O}_F)$ is the ideal class number of \mathcal{O}_F .

REMARK 1.2. Write R_{η} for the regulator of the set $\{\eta^{\tau^i} : 0 \leq i \leq \ell - 2\}$. Then we have

$$[\mathcal{O}_F^*:\widetilde{\mathcal{C}}_F] = \frac{R_\eta}{R(\mathcal{O}_K)},$$

where $R(\mathcal{O}_K)$ is the regulator of \mathcal{O}_K . Thus, we may regard Theorem 1.1 as a generalization of [3, Theorem 16.15].

2. Proof of Theorem 1.1

To give the proof of Theorem 1.1, we need some lemmas.

LEMMA 2.1. $F = k(\sqrt[\ell]{P}) \subseteq K_P^+$.

Proof. Since G_P is a cyclic group of order $q^d - 1$, there is a unique cyclic extension of k of degree ℓ inside K_P . By Lemma 3.2 in [2], $k(\sqrt[\ell]{P})$ is contained in K_P . Since $d = \deg(P)$ is divisible by ℓ , so is $|G_P^+| = \frac{q^d - 1}{q - 1}$. Thus k has a cyclic extension of degree ℓ inside K_P^+ . By the uniqueness, it must be $k(\sqrt[\ell]{P})$.

Fix a primitive root $Q \in \mathcal{M}_P$ of P. For any $B \in \mathbb{A}$ with $P \nmid B$, write $\delta_Q(B)$ for the index of B relative to Q.

LEMMA 2.2. Let B be a polynomial in A such that $P \nmid B$. Then $\sigma_B \in Gal(K_P/F)$ if and only if $(B/P)_{\ell} = 1$.

Proof. Note that the restriction of σ_Q to F is a generator of Gal(F/k). Thus $\sigma_B \in Gal(K_P/F)$ if and only if $\delta_Q(B) \equiv 0 \mod \ell$, which is equivalent to $(B/P)_{\ell} = 1$ by Proposition 3.1 in [3].

LEMMA 2.3. (i) η is independent of the choice of \mathcal{R} . (ii) $\eta \in \mathcal{O}_F^*$.

Proof. (i) Let $\mathcal{Y} = \{A \in \mathcal{M}_P : 0 \leq \delta_Q(A) < (q^d - 1)/(q - 1)\}$. It is easy to see that \mathcal{M}_P is the disjoint union of $\alpha \cdot \mathcal{Y}$, where α runs over all elements of \mathbb{F}_q^* . Thus, \mathcal{Y} is a complete set of representatives of $(\mathbb{A}/P\mathbb{A})^*/\mathbb{F}_q^*$. Let \mathcal{R} be any complete set of representatives of $(\mathbb{A}/P\mathbb{A})^*/\mathbb{F}_q^*$. For any $A \in \mathcal{R}$, there exist unique $\tilde{A} \in \mathcal{Y}$ and $c \in \mathbb{F}_q^*$ such that $A \equiv c\tilde{A} \mod P$. Thus we have

$$\frac{\lambda_P^A}{sgn_P(A)\lambda_P} = \frac{\lambda_P^{c\tilde{A}}}{sgn_P(c\tilde{A})\lambda_P} = \frac{\lambda_P^{\tilde{A}}}{sgn_P(\tilde{A})\lambda_P}$$

Also, $(A/P)_{\ell} = (\tilde{A}/P)_{\ell}$, since $(c/P)_{\ell} = 1$ by Proposition 3.2 in [3]. Thus we have

$$\eta = \frac{\left(\prod_{A \in \mathcal{R}_0} \lambda_P^A / sgn_P(A)\lambda_P\right)^{\ell}}{\prod_{A \in \mathcal{R}} \lambda_P^A / sgn_P(A)\lambda_P}$$
$$= \frac{\left(\prod_{A \in \mathcal{Y}_0} \lambda_P^A / sgn_P(A)\lambda_P\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_P^A / sgn_P(A)\lambda_P}.$$

Hwanyup Jung

(ii) Recall that $\mathcal{Y}_0 = \{A \in \mathcal{Y} : (A/P)_{\ell} = 1\}$. Note that λ_P^A/λ_P lies in K_P^+ for any $A \in \mathcal{M}_P$. Thus, it suffices to show that $\eta^{\sigma_B} = \eta$ for all $B \in \mathcal{Y}_0$. For any $B \in \mathcal{Y}_0$, we have

$$\eta^{\sigma_B} = \frac{\left(\prod_{A \in \mathcal{Y}_0} \lambda_P^{AB} / sgn_P(A)\lambda_P^B\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_P^{AB} / sgn_P(A)\lambda_P^B}$$

$$(2.1) = \frac{\left(\prod_{A \in \mathcal{Y}_0} \lambda_P^{AB} / sgn_P(AB)\lambda_P\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_P^{AB} / sgn_P(AB)\lambda_P} \cdot \frac{\left(\prod_{A \in \mathcal{Y}_0} sgn_P(AB) / sgn_P(A)\right)^{\ell}}{\prod_{A \in \mathcal{Y}} sgn_P(AB) / sgn_P(A)}$$

Since $B \in \mathcal{Y}_0$, $\delta_Q(B) = n\ell$ for some $0 \le n < \frac{q^d - 1}{\ell(q-1)}$. Then we have

(2.2)
$$\prod_{A \in \mathcal{Y}} \frac{sgn_P(AB)}{sgn_P(A)} = \prod_{j=0}^{\frac{q^a-1}{\ell(q-1)}-1} \frac{sgn_P(Q^{j\ell+n\ell})}{sgn_P(Q^{j\ell})}$$
$$= \frac{\prod_{j=0}^{n-1} sgn_P(Q^{\frac{q^d-1}{q-1}+j\ell})}{\prod_{j=0}^{n-1} sgn_P(Q^{j\ell})}$$
$$= (c_0)^n,$$

where c_0 is the unique element of \mathbb{F}_q^* such that $c_0 \equiv Q^{\frac{q^d-1}{q-1}} \mod P$. Similarly, we have

(2.3)
$$\prod_{A \in \mathcal{Y}} \frac{sgn_P(AB)}{sgn_P(A)} = \prod_{j=0}^{\frac{q^d-1}{q-1}-1} \frac{sgn_P(Q^{j+n\ell})}{sgn_P(Q^j)} = \frac{\prod_{j=0}^{n\ell-1} sgn_P(Q^{\frac{q^d-1}{q-1}+j})}{\prod_{j=0}^{n\ell-1} sgn_P(Q^j)} = (c_0)^{n\ell}.$$

Since $\mathcal{W} = \{AB : A \in \mathcal{Y}\}$ is also a complete set of representatives of $(\mathbb{A}/P\mathbb{A})^*/\mathbb{F}_q^*$ and $\mathcal{W}_0 = \{AB : A \in \mathcal{Y}_0\}$, by (2.1), (2.2) and (2.3), we have $\eta^{\sigma_B} = \eta$, which completes the proof.

We set

$$\varepsilon := \frac{1}{\sqrt[\ell]{P}} N_{K_P/F}(\lambda_P) \in \mathcal{O}_F^*.$$

Proposition 2.4. $\eta^{\frac{q-1}{\ell}} = \varepsilon$.

Proof. By taking $\mathcal{R} = \mathcal{M}_P^+$, we have

$$\eta = \frac{\left(\prod_{A \in \mathcal{M}_P^+, (A/P)_{\ell}=1} \lambda_P^A\right)^{\ell}}{\prod_{A \in \mathcal{M}_P^+} \lambda_P^A}.$$

Since

$$N_{K_P/F}(\lambda_P) = \prod_{A \in \mathcal{M}_P^+, (A/P)_{\ell} = 1} \prod_{c \in \mathbb{F}_q^*} \lambda_{P_i}^{cA}$$
$$= (-1)^{\frac{q^d - 1}{\ell(q-1)}} \Big(\prod_{A \in \mathcal{M}_P^+, (A/P)_{\ell} = 1} \lambda_P^A \Big)^{q-1},$$

we have

$$\eta^{\frac{q-1}{\ell}} = \frac{(-1)^{\frac{q^d-1}{\ell(q-1)}} N_{K_P/F}(\lambda_P)}{(-1)^{\frac{q^d-1}{\ell(q-1)}} \sqrt[\ell]{P}} = \varepsilon,$$

which completes the proof.

Now, we give the proof of Theorem 1.1. Let C_F be the subgroup of \mathcal{O}_F^* generated by \mathbb{F}_q^* and $\{\varepsilon^{\tau^i}: 0 \leq i \leq \ell - 1\}$. It is known ([1, Theorem 3.4]) that $\{\varepsilon^{\tau^i}: 0 \leq i \leq \ell - 2\}$ forms a basis for the non-torsion part of C_F and

(2.4)
$$[\mathcal{O}_F^*:\mathcal{C}_F] = \frac{(q-1)^{\ell-1}}{\ell} \cdot h(\mathcal{O}_F).$$

By Proposition 2.4, C_F is contained in \widetilde{C}_F and

(2.5)
$$[\widetilde{\mathcal{C}}_F : \mathcal{C}_F] = \left(\frac{q-1}{\ell}\right)^{\ell-1}.$$

Thus $\{\eta^{\tau^i}: 0 \leq i \leq \ell - 2\}$ forms a basis for the non-torsion part of $\widetilde{\mathcal{C}}_F$ and, by (2.4) and (2.5), we have

$$[\mathcal{O}_F^*:\widetilde{\mathcal{C}}_F] = \ell^{\ell-2} \cdot h(\mathcal{O}_F),$$

which completes the proof of Theorem 1.1.

References

- J. Ahn and H. Jung, Kucera group of circular units in function fields. Bull. Korean math. Soc. 44 (2007), No. 2, 233-239.
- [2] B. Angles, On Hilbert class field towers of global function fields, in "Drinfeld modules, modular schemes and applications," 261–271, World Sci. Publishing, River Edge, NJ 1997.

437

Hwanyup Jung

[3] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr