A NOTE ON CYCLOTOMIC UNITS IN FUNCTION FIELDS

Hwanyup Jung*

Abstract

Let $\mathbb{A}=\mathbb{F}_{q}[T]$ and $k=\mathbb{F}_{q}(T)$. Assume q is odd, and fix a prime divisor ℓ of $q-1$. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ. In this paper we define a subgroup \widetilde{C}_{F} of \mathcal{O}_{F}^{*} which is generated by \mathbb{F}_{q}^{*} and $\left\{\eta^{\tau^{i}}: 0 \leq i \leq\right.$ $\ell-1\}$ in $F=k(\sqrt[\ell]{P})$ and calculate the unit-index $\left[\mathcal{O}_{F}^{*}: \widetilde{C}_{F}\right]=$ $\ell^{\ell-2} h\left(\mathcal{O}_{F}\right)$. This is a generalization of [3, Theorem 16.15].

1. Introduction and statement of result

Let $\mathbb{A}=\mathbb{F}_{q}[T]$ and $k=\mathbb{F}_{q}(T)$. Assume q is odd, and fix a prime divisor ℓ of $q-1$. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ. Let K_{P} be the P-th cyclotomic function field, which is a finite cyclic extension of k. The Galois group $G_{P}:=$ $\operatorname{Gal}\left(K_{P} / k\right)$ is isomorphic to $(\mathbb{A} / P \mathbb{A})^{*}$. For any $A \in(\mathbb{A} / P \mathbb{A})^{*}$, write σ_{A} for the automorphism in G_{P} characterized by $\sigma_{A}(\lambda)=\rho_{A}(\lambda)$ for any P-torsion point λ of the Carlitz module ρ. We write $\lambda^{A}:=\rho_{A}(\lambda)$ for simplicity. Let K_{P}^{+}be the maximal real subfield of K_{P}, so that $\operatorname{Gal}\left(K_{P} / K_{P}^{+}\right) \cong \mathbb{F}_{q}^{*}$. Set

$$
\mathcal{M}_{P}:=\{0 \neq A \in \mathbb{A}: \operatorname{deg}(A)<\operatorname{deg}(P)\}
$$

and

$$
\mathcal{M}_{P}^{+}:=\left\{A \in \mathcal{M}_{P}: A \text { is a monic }\right\} .
$$

Then, as in the proof of Lemma 16.13 in [3], we have

$$
P=(-1)^{\frac{q^{d}-1}{q-1}}\left(\prod_{A \in \mathcal{M}_{P}^{+}} \lambda_{P}^{A}\right)^{q-1}
$$

Received October 1, 2007.
2000 Mathematics Subject Classification: Primary 11R29, 11R58.
Key words and phrases: cyclotomic units, unit index.
This work was supported by the research grant of the Chungbuk National University in 2007.
where λ_{P} is a primitive P-torsion point of the Carlitz module ρ. We fix

$$
\sqrt[\ell]{P}:=(-1)^{\frac{q^{d}-1}{\ell(q-1)}}\left(\prod_{A \in \mathcal{M}_{P}^{+}} \lambda_{P}^{A}\right)^{\frac{q-1}{\ell}} .
$$

Let $F=k(\sqrt[\ell]{P})$, which is the unique cyclic extension of k of degree ℓ inside K_{P}^{+}(see Lemma 2.1), and \mathcal{O}_{F} the integral closure of \mathbb{A} in F. For any polynomial $A \in \mathbb{A}$ with $P \nmid A$, write \bar{A} for the unique element of \mathcal{M}_{P} such that $A \equiv \bar{A} \bmod P$ and $\operatorname{sgn}_{P}(A)$ for the leading coefficient of \bar{A}. Also, $(A / P)_{\ell}$ denotes the unique element of \mathbb{F}_{q}^{*} such that

$$
A^{\frac{q^{d^{-}-1}}{\ell}} \equiv(A / P)_{\ell} \bmod P .
$$

Let \mathcal{R} be any complete set of representatives of $(\mathbb{A} / P \mathbb{A})^{*} / \mathbb{F}_{q}^{*}$. Define

$$
\eta:=\frac{\left(\prod_{A \in \mathcal{R}_{0}} \lambda_{P}^{A} / \operatorname{sgn} n_{P}(A) \lambda_{P}\right)^{\ell}}{\prod_{A \in \mathcal{R}} \lambda_{P}^{A} / \operatorname{sgn} n_{P}(A) \lambda_{P}}
$$

where $\mathcal{R}_{0}=\left\{A \in \mathcal{R}:(A / P)_{\ell}=1\right\}$. This unit η is independent of the choice of \mathcal{R} and is an element of F (see Lemma 2.3). Let $\widetilde{\mathcal{C}}_{F}$ be the subgroup of \mathcal{O}_{F}^{*} generated by \mathbb{F}_{q}^{*} and $\left\{\eta^{\tau^{i}}: 0 \leq i \leq \ell-1\right\}$, where τ is a generator of $\operatorname{Gal}(F / k)$.

The main result of this paper is the following theorem.
Theorem 1.1. Let ℓ be a prime divisor of $q-1$. Let P be a monic irreducible polynomial in \mathbb{A} whose degree d is divisible by ℓ. Then $\left\{\eta^{\tau^{i}}\right.$: $0 \leq i \leq \ell-2\}$ forms a basis for the non-torsion part of $\widetilde{\mathcal{C}}_{F}$ and the index of $\widetilde{\mathcal{C}}_{F}$ in the full unit group \mathcal{O}_{F}^{*} is given by

$$
\left[\mathcal{O}_{F}^{*}: \widetilde{\mathcal{C}}_{F}\right]=\ell^{\ell-2} \cdot h\left(\mathcal{O}_{F}\right),
$$

where $h\left(\mathcal{O}_{F}\right)$ is the ideal class number of \mathcal{O}_{F}.
Remark 1.2. Write R_{η} for the regulator of the set $\left\{\eta^{\tau^{i}}: 0 \leq i \leq\right.$ $\ell-2\}$. Then we have

$$
\left[\mathcal{O}_{F}^{*}: \widetilde{\mathcal{C}}_{F}\right]=\frac{R_{\eta}}{R\left(\mathcal{O}_{K}\right)},
$$

where $R\left(\mathcal{O}_{K}\right)$ is the regulator of \mathcal{O}_{K}. Thus, we may regard Theorem 1.1 as a generalization of [3, Theorem 16.15].

2. Proof of Theorem 1.1

To give the proof of Theorem 1.1, we need some lemmas.
Lemma 2.1. $F=k(\sqrt[\ell]{P}) \subseteq K_{P}^{+}$.
Proof. Since G_{P} is a cyclic group of order $q^{d}-1$, there is a unique cyclic extension of k of degree ℓ inside K_{P}. By Lemma 3.2 in $[2], k(\sqrt[\ell]{P})$ is contained in K_{P}. Since $d=\operatorname{deg}(P)$ is divisible by ℓ, so is $\left|G_{P}^{+}\right|=\frac{q^{d}-1}{q-1}$. Thus k has a cyclic extension of degree ℓ inside K_{P}^{+}. By the uniqueness, it must be $k(\sqrt[\ell]{P})$.

Fix a primitive root $Q \in \mathcal{M}_{P}$ of P. For any $B \in \mathbb{A}$ with $P \nmid B$, write $\delta_{Q}(B)$ for the index of B relative to Q.

Lemma 2.2. Let B be a polynomial in \mathbb{A} such that $P \nmid B$. Then $\sigma_{B} \in \operatorname{Gal}\left(K_{P} / F\right)$ if and only if $(B / P)_{\ell}=1$.

Proof. Note that the restriction of σ_{Q} to F is a generator of $G a l(F / k)$. Thus $\sigma_{B} \in \operatorname{Gal}\left(K_{P} / F\right)$ if and only if $\delta_{Q}(B) \equiv 0 \bmod \ell$, which is equivalent to $(B / P)_{\ell}=1$ by Proposition 3.1 in [3].

Lemma 2.3. (i) η is independent of the choice of \mathcal{R}.
(ii) $\eta \in \mathcal{O}_{F}^{*}$.

Proof. (i) Let $\mathcal{Y}=\left\{A \in \mathcal{M}_{P}: 0 \leq \delta_{Q}(A)<\left(q^{d}-1\right) /(q-1)\right\}$. It is easy to see that \mathcal{M}_{P} is the disjoint union of $\alpha \cdot \mathcal{Y}$, where α runs over all elements of \mathbb{F}_{q}^{*}. Thus, \mathcal{Y} is a complete set of representatives of $(\mathbb{A} / P \mathbb{A})^{*} / \mathbb{F}_{q}^{*}$. Let \mathcal{R} be any complete set of representatives of $(\mathbb{A} / P \mathbb{A})^{*} / \mathbb{F}_{q}^{*}$. For any $A \in \mathcal{R}$, there exist unique $\tilde{A} \in \mathcal{Y}$ and $c \in \mathbb{F}_{q}^{*}$ such that $A \equiv c \tilde{A} \bmod P$. Thus we have

$$
\frac{\lambda_{P}^{A}}{\operatorname{sgn}_{P}(A) \lambda_{P}}=\frac{\lambda_{P}^{c \tilde{A}}}{\operatorname{sgn}_{P}(c \tilde{A}) \lambda_{P}}=\frac{\lambda_{P}^{\tilde{A}}}{\operatorname{sgn}_{P}(\tilde{A}) \lambda_{P}}
$$

Also, $(A / P)_{\ell}=(\tilde{A} / P)_{\ell}$, since $(c / P)_{\ell}=1$ by Proposition 3.2 in [3]. Thus we have

$$
\begin{aligned}
\eta & =\frac{\left(\prod_{A \in \mathcal{R}_{0}} \lambda_{P}^{A} / \operatorname{sgn}_{P}(A) \lambda_{P}\right)^{\ell}}{\prod_{A \in \mathcal{R}} \lambda_{P}^{A} / \operatorname{sgn}_{P}(A) \lambda_{P}} \\
& =\frac{\left(\prod_{A \in \mathcal{Y}_{0}} \lambda_{P}^{A} / \operatorname{sgn}_{P}(A) \lambda_{P}\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_{P}^{A} / \operatorname{sgn}_{P}(A) \lambda_{P}} .
\end{aligned}
$$

(ii) Recall that $\mathcal{Y}_{0}=\left\{A \in \mathcal{Y}:(A / P)_{\ell}=1\right\}$. Note that $\lambda_{P}^{A} / \lambda_{P}$ lies in K_{P}^{+}for any $A \in \mathcal{M}_{P}$. Thus, it suffices to show that $\eta^{\sigma_{B}}=\eta$ for all $B \in \mathcal{Y}_{0}$. For any $B \in \mathcal{Y}_{0}$, we have

$$
\begin{aligned}
\eta^{\sigma_{B}} & =\frac{\left(\prod_{A \in \mathcal{Y}_{0}} \lambda_{P}^{A B} / \operatorname{sgn}_{P}(A) \lambda_{P}^{B}\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_{P}^{A B} / \operatorname{sgn}_{P}(A) \lambda_{P}^{B}} \\
(2.1) & =\frac{\left(\prod_{A \in \mathcal{Y}_{0}} \lambda_{P}^{A B} / \operatorname{sgn}_{P}(A B) \lambda_{P}\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \lambda_{P}^{A B} / \operatorname{sgn}_{P}(A B) \lambda_{P}} \cdot \frac{\left(\prod_{A \in \mathcal{Y}_{0}} \operatorname{sgn}_{P}(A B) / \operatorname{sgn}_{P}(A)\right)^{\ell}}{\prod_{A \in \mathcal{Y}} \operatorname{sgn}_{P}(A B) / \operatorname{sgn}_{P}(A)} .
\end{aligned}
$$

Since $B \in \mathcal{Y}_{0}, \delta_{Q}(B)=n \ell$ for some $0 \leq n<\frac{q^{d}-1}{\ell(q-1)}$. Then we have

$$
\begin{align*}
& \prod_{A \in \mathcal{Y}} \frac{\operatorname{sgn}_{P}(A B)}{\operatorname{sgn}_{P}(A)}=\prod_{j=0}^{\frac{q^{d}-1}{\ell(q-1)}-1} \frac{\operatorname{sgn}_{P}\left(Q^{j \ell+n \ell}\right)}{\operatorname{sgn}_{P}\left(Q^{j \ell}\right)} \\
&=\frac{\prod_{j=0}^{n-1} \operatorname{sgn} n_{P}\left(Q^{q^{d}-1}{ }^{\frac{1}{q-1}}+j \ell\right.}{} \\
& \prod_{j=0}^{n-1} \operatorname{sgn}_{P}\left(Q^{j \ell}\right) \tag{2.2}\\
&=\left(c_{0}\right)^{n},
\end{align*}
$$

where c_{0} is the unique element of \mathbb{F}_{q}^{*} such that $c_{0} \equiv Q^{\frac{q^{d}-1}{q-1}} \bmod P$. Similarly, we have

$$
\begin{align*}
\prod_{A \in \mathcal{Y}} \frac{\operatorname{sgn}_{P}(A B)}{\operatorname{sgn}_{P}(A)} & =\prod_{j=0}^{\frac{q^{d}-1}{q-1}-1} \frac{\operatorname{sgn}_{P}\left(Q^{j+n \ell}\right)}{\operatorname{sgn}_{P}\left(Q^{j}\right)} \\
& =\frac{\prod_{j=0}^{n \ell-1} \operatorname{sgn}_{P}\left(Q^{\frac{q^{d}-1}{q-1}+j}\right)}{\prod_{j=0}^{n \ell-1} \operatorname{sgn}_{P}\left(Q^{j}\right)} \\
& =\left(c_{0}\right)^{n \ell} \tag{2.3}
\end{align*}
$$

Since $\mathcal{W}=\{A B: A \in \mathcal{Y}\}$ is also a complete set of representatives of $(\mathbb{A} / P \mathbb{A})^{*} / \mathbb{F}_{q}^{*}$ and $\mathcal{W}_{0}=\left\{A B: A \in \mathcal{Y}_{0}\right\}$, by (2.1), (2.2) and (2.3), we have $\eta^{\sigma_{B}}=\eta$, which completes the proof.

We set

$$
\varepsilon:=\frac{1}{\sqrt[l]{P}} N_{K_{P} / F}\left(\lambda_{P}\right) \in \mathcal{O}_{F}^{*}
$$

Proposition 2.4. $\eta^{\frac{q-1}{\ell}}=\varepsilon$.

Proof. By taking $\mathcal{R}=\mathcal{M}_{P}^{+}$, we have

$$
\eta=\frac{\left(\prod_{A \in \mathcal{M}_{P}^{+},(A / P)_{\ell}=1} \lambda_{P}^{A}\right)^{\ell}}{\prod_{A \in \mathcal{M}_{P}^{+}} \lambda_{P}^{A}}
$$

Since

$$
\begin{aligned}
N_{K_{P} / F}\left(\lambda_{P}\right) & =\prod_{A \in \mathcal{M}_{P}^{+},(A / P)_{\ell}=1} \prod_{c \in \mathbb{F}_{q}^{*}} \lambda_{P_{i}}^{c A} \\
& =(-1)^{\frac{q^{d}-1}{\ell(q-1)}}\left(\prod_{A \in \mathcal{M}_{P}^{+},(A / P)_{\ell}=1} \lambda_{P}^{A}\right)^{q-1}
\end{aligned}
$$

we have

$$
\eta^{\frac{q-1}{\ell}}=\frac{(-1)^{\frac{q^{d}-1}{\ell(q-1)}} N_{K_{P} / F}\left(\lambda_{P}\right)}{(-1)^{\frac{q^{d}-1}{\ell(q-1)}} \sqrt[\ell]{P}}=\varepsilon
$$

which completes the proof.
Now, we give the proof of Theorem 1.1. Let \mathcal{C}_{F} be the subgroup of \mathcal{O}_{F}^{*} generated by \mathbb{F}_{q}^{*} and $\left\{\varepsilon^{\tau^{i}}: 0 \leq i \leq \ell-1\right\}$. It is known ($[1$, Theorem 3.4]) that $\left\{\varepsilon^{\tau^{i}}: 0 \leq i \leq \ell-2\right\}$ forms a basis for the non-torsion part of \mathcal{C}_{F} and

$$
\begin{equation*}
\left[\mathcal{O}_{F}^{*}: \mathcal{C}_{F}\right]=\frac{(q-1)^{\ell-1}}{\ell} \cdot h\left(\mathcal{O}_{F}\right) \tag{2.4}
\end{equation*}
$$

By Proposition 2.4, \mathcal{C}_{F} is contained in $\widetilde{\mathcal{C}}_{F}$ and

$$
\begin{equation*}
\left[\widetilde{\mathcal{C}}_{F}: \mathcal{C}_{F}\right]=\left(\frac{q-1}{\ell}\right)^{\ell-1} \tag{2.5}
\end{equation*}
$$

Thus $\left\{\eta^{\tau^{i}}: 0 \leq i \leq \ell-2\right\}$ forms a basis for the non-torsion part of $\widetilde{\mathcal{C}_{F}}$ and, by (2.4) and (2.5), we have

$$
\left[\mathcal{O}_{F}^{*}: \widetilde{\mathcal{C}}_{F}\right]=\ell^{\ell-2} \cdot h\left(\mathcal{O}_{F}\right)
$$

which completes the proof of Theorem 1.1.

References

[1] J. Ahn and H. Jung, Kucera group of circular units in function fields. Bull. Korean math. Soc. 44 (2007), No. 2, 233-239.
[2] B. Angles, On Hilbert class field towers of global function fields, in "Drinfeld modules, modular schemes and applications," 261-271, World Sci. Publishing, River Edge, NJ 1997.
[3] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
*
Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

