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ALGEBRAIC MEET CONTINUOUS LATTICE

Seung On Lee* and Yong Ho Yon **

Abstract. This paper is sequel to [3]. In this paper, we discuss
some properties of an algebraic meet-continuous lattice and study
a complete lattice which can be embedded into an algebraic meet-
continuous lattice.

1. Strong atomistic complete lattice

We recall that an algebraic lattice is just a sublattice of a power of
the two point chain with respect to an arbitrary meets and directed
joins. In 1969, Lawson has shown that continuous lattices are precisely
sublattices of a power of the unit interval under the same operations
as above. In 1972, Scott has named a concept of continuous lattices
and has shown the equivalence between continuous lattices and injective
T0-spaces([4]).

Every complete lattice L can be embedded into an atomistic Boolean
lattice P(L), where P(L) is the power set of L, but the complete lattice
L is not algebraic or continuous. We study a complete lattice which is
embedded into an algebraic meet-continuous lattice.

In this paper, every semilattice has the bottom element 0 and ev-
ery meet-semilattice has the top element e. That is, a lattice means a
bounded lattice.

Recall that a complete lattice L is said to be continuous if x =
∨ ↓w x

for all x ∈ L, and L is said to be algebraic if x =
∨

(↓ x ∩K(L)) for all
x ∈ L, where ↓ x = {y ∈ L | y ≤ x} and K(L) is the set of all compact
elements in L. Clearly, every algebraic lattice is continuous.

For terminology not introduced in this paper, we refer to [2, 3].
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Let (P,≤) be a poset and x, y ∈ P . We say that x is covered by y (or
y covers x), denoted by x−< y or y >−x, if x < y and x ≤ z < y implies
z = x.

An element a in a lattice L is called an atom if 0 −< a. We denote
the set of all atoms in L by A(L).

A lattice L is said to be atomic if the interval [0, x] contains an atom
for every x > 0, and atomistic if for each x ∈ L, x =

∨
S for a subset S

of A(L).
An element u in a lattice L is called join-irreducible if for any x, y ∈ L,

u = x ∨ y implies u = x or u = y. We denote the set of all non-zero
join-irreducible elements in L by J(L). If a join-irreducible element has
a lower cover, then it is unique.

A lattice L is said to be strong if for any x, y ∈ L and any u ∈ J(L),
b < u ≤ x ∨ y imply u ≤ y.

A lattice L is called a J-lattice if for each x ∈ L, x =
∨

S for a subset
S of J(L).

Further discussions of an atomistic lattice and an atomic J-lattice
can be found in [5].

Lemma 1.1. ([3]) If L is an atomistic meet-continuous lattice, then
L is a continuous lattice.

Definition 1.2. A complete lattice L is said to be irredundant atom-
istic if for each x ∈ L, there is a non-empty subset S of A(L) such that

x =
∨

S and
∨

S′ < x

for every non-empty proper subset S′ of S.

Lemma 1.3. If L is an irredundant atomistic complete lattice, then
J(L) = A(L).

Proof. It is clear that every atom is join-irreducible, that is, J(L) ⊆
A(L).

To show that A(L) ⊆ J(L), suppose that u ∈ J(L) and u is not an
atom. Since L is irreducible atomistic, there is a non-empty subset S
of A(L) such that u =

∨
S and

∨
S′ < u for every non-empty proper

subset S′ of S. So

u = a ∨ (
∨

(S − {a})) and
∨

(S − {a}) 6= u

for any a ∈ S. Since u is irreducible, u = a, and it is contradiction.
Hence u is an atom.

Proposition 1.4. Any irredundant atomistic lattice is strong.
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Proof. Suppose that x < u ≤ x ∨ y for x, y ∈ L and u ∈ J(L). Then
x = 0 since u is an atom, hence u ≤ x ∨ y = 0 ∨ y = y.

Let L be a lattice and x, y ∈ L with x ≤ y. Then we denote

r(x; y) = {z ∈ L | y ≤ x ∨ z and x ∧ z = 0}.
For any x, y ∈ L with x ≤ y, if x = y, then

r(x; y) = {z ∈ L | x ∧ z = 0},
and r(x; y) 6= ∅ since 0 ∈ r(x; y); otherwise, 0 6∈ r(x; y). And it is clear
that y1 ≤ y2 implies r(x; y1) ⊇ r(x; y2), hence if x has the complement
x′, then x′ ∈ r(x; 1) ⊆ r(x; y) for all y ∈↑ x since x ∧ x′ = 0 and
y ≤ 1 = x ∨ x′.

Lemma 1.5. Let L be an atomic and a strong lattice. If r(a; u) 6= ∅
for each u ∈ J(L) and each a ∈↓ u ∩A(L), then J(L) = A(L).

Proof. It is clear that A(L) ⊆ J(L).
Let u ∈ J(L). Since L is atomic, the interval [0, u] has an atom au.

If au < u, then r(au;u) 6= ∅, hence there is z ∈ L such that u ≤ au ∨ z
and au ∧ z = 0. Since L is strong, u ≤ z, and au ≤ z. It contradicts to
au ∧ z = 0. Hence u = au ∈ A(L).

Proposition 1.6. Let L be an atomic strong complete J-lattice. If
r(a; u) 6= ∅ for each u ∈ J(L) and each a ∈↓ u∩A(L), then L is atomistic.

Proof. If x ∈ L and x = 0, then
∨

(↓ x ∩A(L)) = ∨∅ = 0.
Let x ∈ L with x 6= 0. Since L is J-lattice, there is a non-empty

subset S of J(L) such that x =
∨

S. S ⊆ A(L) and u ≤ x for all u ∈ S.
Hence we have

x =
∨

S ≤ ∨
(↓ x ∩A(L)) ≤ x,

that is, x =
∨

(↓ x ∩A(L)).

Corollary 1.7. If L is an atomic strong meet-continuous J-lattice
with r(a; u) 6= ∅ for each u ∈ J(L) and each a ∈↓ u ∩ A(L), then L is
continuous.

Proof. If L is an atomic strong meet-continuous J-lattice with r(a;u) 6=
∅ for each u ∈ J(L) and each a ∈↓ u ∩A(L), then L is an atomic meet-
continuous lattice, and hence L is continuous.

Proposition 1.8. Let L be a meet-continuous lattice. If every join-
irreducible element of L has the lower cover, then J(L) ⊆ K(L).
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Proof. Let u ∈ J(L) and u0 the lower cover of u and D a directed
subset of ↓ u with u =

∨
D. Then d ≤ u for all d ∈ D.

If d ≤ u0 for all d ∈ D, then
∨

D ≤ u0 < u,and it is a contradiction
for u =

∨
D. Hence there is d ∈ D with d 6≤ u0, and u0 < d ∨ u0 ≤ u.

Since u0−< u = d ∨ u0 and u 6= u0, u = d and u ∈ K(L).

Corollary 1.9. If L is a meet-continuous J-lattice and every join-
irreducible element has the lower cover, then L is algebraic.

Proof. If L is a meet-continuous J-lattice of which every join-irreducible
element has the lower cover and x ∈ L, then x =

∨
S for some S ⊆ J(L).

Since J(L) ⊆ K(L) by Proposition 1.8, x =
∨

S for some S ⊆ K(L).

2. (
∧

, f)-structure in an algebraic meet-continuous lattice

Definition 2.1. Let P and Q be posets. A map f : P → Q is said
to be

(1) monotone if x ≤ y in P implies f(x) ≤ f(y) in Q;
(2) order-embedding if x ≤ y in P if and only if f(x) ≤ f(y) in Q.

If a map f : L → K between complete lattices is 1-1 and and pre-
serves arbitrary joins (or meets), then f is an order-embedding map.
Conversely, If f : L → K is an order-embedding map, then f is 1-1
and monotone, but f preserves neither arbitrary joins (including e) nor
arbitrary meets (including 0) in general.

For an adjunction (g, f) between posets P and Q, we denote g a f :
P → Q or g a f briefly, and g is called the left adjoint of f and f is the
right adjoint of g([1]).

Let f : P → Q be a map between posets and P is a complete lattice,
then f preserves arbitrary meets if and only if f is monotone and f has
a left adjoint.

Let g : Q → P be a map between posets and Q is a complete lattice,
then g preserves arbitrary joins if and only if g is monotone and g has a
right adjoint.

We remark that the complete lattice SubV of all subspaces of a vector
space V is not a distributive lattice, so SubV is not a frame, but SubV
is a meet-continuous lattice. So we can conclude that a meet-continuous
lattice need not be distributive.

Lemma 2.2. Let P and Q be posets and f : P → Q an order-
embedding map.

(1) If g a f , then g is a left inverse of f , i.e., gf = 1P .
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(2) If f a g, then g is a left inverse of f .

Lemma 2.3. Let P and Q be posets and f : P → Q a monotone map.
If D is a directed subset of P , then f(D) is a directed subset of Q.

Proposition 2.4. Let L and K be complete lattices and g a f : L →
K. If f preserves directed joins, then x ¿ y in K implies g(x) ¿ g(y)
in L.

Proof. See [3].

The converse of the above proposition is not true in general.

Corollary 2.5. Let L and K be complete lattices and g a f : L →
K. If f preserves directed joins, then y ¿ f(x) in K implies g(y) ¿ x
in L. Hence g(↓w f(x)) ⊆↓w x for all x ∈ L.

Every atom in an atomistic meet-continuous lattice H is compact,
that is, A(H) ⊆ K(H). Hence every atomistic meet-continuous lattice
is algebraic since x =

∨
(↓ x ∩A(H)) ≤ ∨

(↓ x ∩K(H)) ≤ x.
The power set lattice P(L) of a complete lattice L is a frame; hence a

meet-continuous lattice, which is atomistic with A(P(L)) = {{x} | x ∈
L}, that is, P(L) is algebraic meet-continuous. The map ↓: L →
P(L) (x 7→↓ x) is 1-1 and has the left adjoint

∨
: P(L) → L (S 7→∨

S), i.e., ↓ is 1-1 meet-preserving map. Hence we can consider an 1-1
meet-preserving map from a complete lattice L to an algebraic meet-
continuous lattice H.

Let L be a complete lattice and H an algebraic complete lattice. If
f : L → H is a map with g a f , then we denote

Kf (L) = {g(k) ∈ L | k ∈ K(H)}.
Lemma 2.6. Let L be a complete lattice, H an algebraic complete

lattice and g a f : L → H. Then we have the following : for any x ∈ L,

(1) ↓ x ∩Kf (L) = g(↓ f(x) ∩K(H)),
(2) f(x) =

∨
(↓ f(x) ∩K(H)) ≤ ∨

f(↓ x ∩Kf (L)).

Proof. (1) Let u ∈↓ x∩Kf (L). Then there is k ∈ K(H) with g(k) =
u ≤ x. Since g a f , k ≤ f(x). Hence k ∈↓ f(x) ∩K(H) and u = g(k) ∈
g(↓ f(x) ∩K(H)).

Conversely, let u ∈ g(↓ f(x) ∩ K(H)). Then there is k ∈ K(H)
with k ≤ f(x) and u = g(k). Since g a f , u = g(k) ≤ x. Hence
u ∈↓ x ∩Kf (L).

(2) It is clear that f(x) =
∨

(↓ f(x) ∩ K(H)) since H is algebraic.
We need to show that

∨
(↓ f(x) ∩K(H)) ≤ ∨

f(↓ x ∩Kf (L)).
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Since 1H ≤ fg and ↓ x ∩Kf (L) = g(↓ f(x) ∩K(H)) by (1), we have
∨

(↓ f(x) ∩K(H)) ≤ ∨
fg(↓ f(x) ∩K(H)) =

∨
f(↓ x ∩Kf (L)).

Proposition 2.7. Let L be a complete lattice, H an algebraic meet-
continuous lattice and g a f : L → H. Then f preserves directed joins if
and only if every element of Kf (L) is compact, that is, Kf (L) ⊆ K(L).

Proof. Suppose that f preserves directed joins and u ∈ Kf (L). Let
D be a directed subset of L with u ≤ ∨

D. Then there is k ∈ K(H)
with g(k) = u. Since g a f and f preserves directed joins,

k ≤ f(u) ≤ f(
∨

L D) =
∨

H f(D).

Since k is compact and f(D) is directed, there is d ∈ D with k ≤ f(d).
Hence u = g(k) ≤ g(f(d)) ≤ d, so u ¿ u.

Conversely, suppose that u is a compact element for every u ∈ Kf (L)
and D is a directed subset of L. Since f(

∨
L D) ≥ ∨

H f(D), it remain
to show that f(

∨
L D) ≤ ∨

H f(D).
Let α =

∨
L D and k ∈↓ f(α) ∩K(H). Then k ≤ f(α), and

g(k) ≤ α =
∨

L D.

Since g(k) is a compact element in L and D is directed, there is d ∈ D
with g(k) ≤ d, hence k ≤ f(d) ≤ ∨

H f(D). That is, k ≤ ∨
H f(D) for

every k ∈↓ f(α) ∩K(H), so

f(
∨

L D) = f(α) =
∨

H(↓ f(α) ∩K(H)) ≤ ∨
H f(D).

Definition 2.8. Let H be a complete lattice. Then L is said to have
(
∧

, f)-structure in H if L is a complete lattice with a map f : L → H
which 1-1 and preserves arbitrary meets. In particular, if L is a complete
lattice with L ⊆ H and the inclusion map i : L → H preserves arbitrary
meets, then L is said to have

∧
-structure in H.

If L has (
∧

, f)-structure in H, then f is an order-embedding map
and has a unique left adjoint. We denoted the left adjoint of f by f l.

We note that f need not preserve arbitrary joins (meets, resp.).
If L has

∧
-structure in H, then L has (

∧
, i)-structure in H, where∧

L S =
∧

H S for every S ⊆ L, because
∧

L S = i(
∧

L S) =
∧

H i(S) =∧
H S.

Lemma 2.9. If L has
∧

-structure in a complete lattice H, then∨
L S ≥ ∨

H S in H for any S ⊆ L.
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Proof. Let i : L → H be the inclusion map. Then i is monotone, and
∨

L S = i(
∨

L S) ≥ ∨
H i(S) =

∨
H S

for any S ⊆ L.

Let L have
∧

-structure in H. Then the inclusion map i : L → H

preserves arbitrary meet and il a i : L → H. We denote k̂ = il(k) for
each k ∈ K(H) and Ki(L) = {k̂ ∈ L | k ∈ K(H)}.

Proposition 2.10. Let L have
∧

-structure in an algebraic meet-
continuous lattice H. Then

∨
H D ∈ L for each directed subset D of L

if and only if k̂ is compact for every k ∈ K(H).

Proof. Let D be a directed subset of L. Since the inclusion map
i : L → H is order-embedding and D ⊆ L, il(d) = il(i(d)) = d for all
d ∈ D, hence il(D) = D. Since

∨
H D ∈ L and il preserves arbitrary

joins, ∨
H D = il(

∨
H D) =

∨
L il(D) =

∨
L D.

Hence we have

i(
∨

L D) =
∨

L D =
∨

H D =
∨

L i(D),

that is, i preserves directed joins, and we have the equivalence of this
proposition by Proposition 2.7.

Example 2.11. Let IdR be the complete lattice of all ideals of a ring
R. Since

∧
IdR S =

⋂S =
∧
P(R) S for every S ⊆ IdR, the inclusion map

i : IdR → P(R) preserves arbitrary meets. Hence IdR has
∧

-structure
in P(R), and for every directed subset D of IdR,

∨
P(R)D =

⋃D ∈ IdR.

By Proposition 2.10, every principal ideal is compact in IdR since {a} ∈
K(P(R)) for all a ∈ R.

In the same way, a subspace generated by a singleton set is compact
in the complete lattice SubV of all subspace of a vector space V

Lemma 2.12. Let L have (
∧

, f)-structure in an algebraic complete
lattice H. Then x =

∨
(↓ x ∩Kf (L)) for every x ∈ L.

Proof. From the definition of an algebraic lattice, f(x) =
∨

(↓ f(x)∩
K(H)) for each x ∈ L. Since f l a f and f is order-embedding, f l

preserves arbitrary joins and f lf = 1L. Hence

x = f lf(x) = f l(
∨

(↓ f(x)∩K(H))) =
∨

f l(↓ f(x)∩K(H)) =
∨

(↓ x∩Kf (L))
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for every x ∈ L.

Proposition 2.13. Let L have (
∧

, f)-structure in an algebraic meet-
continuous lattice H. If f preserves directed joins, then L is algebraic.

Proof. Suppose that f preserves directed joins and let x ∈ L. Then
Kf (L) ⊆ K(L) by Proposition 2.7, hence we have

x =
∨

(↓ x ∩Kf (L)) ≤ ∨
(↓ x ∩K(L)) ≤ x.

That is, x =
∨

(↓ x ∩K(L)), and L is algebraic.

Corollary 2.14. Let L have (
∧

, f)-structure in an algebraic meet-
continuous lattice H. Then we have the following :

(1) If f preserves directed joins, then L is continuous.
(2) If every element of Kf (L) is compact, then L is algebraic.
(3) If every element of Kf (L) is compact, then L is continuous.

Corollary 2.15. Let L have
∧

-structure in an algebraic meet-
continuous lattice H.

(1) If k̂ is compact for every k ∈ K(H), then L is algebraic.

(2) If k̂ is compact for every k ∈ K(H), then L is continuous.
(3) If

∨
H D ∈ L for every directed subset D of L, then L is algebraic.

(4) If
∨

H D ∈ L for every directed subset D of L, then L is continuous.
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