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ALGEBRAIC MEET CONTINUOUS LATTICE

SEUNG ON LEE* AND YONG HO YON **

ABSTRACT. This paper is sequel to [3]. In this paper, we discuss
some properties of an algebraic meet-continuous lattice and study
a complete lattice which can be embedded into an algebraic meet-
continuous lattice.

1. Strong atomistic complete lattice

We recall that an algebraic lattice is just a sublattice of a power of
the two point chain with respect to an arbitrary meets and directed
joins. In 1969, Lawson has shown that continuous lattices are precisely
sublattices of a power of the unit interval under the same operations
as above. In 1972, Scott has named a concept of continuous lattices
and has shown the equivalence between continuous lattices and injective
To-spaces([4]).

Every complete lattice L can be embedded into an atomistic Boolean
lattice P(L), where P(L) is the power set of L, but the complete lattice
L is not algebraic or continuous. We study a complete lattice which is
embedded into an algebraic meet-continuous lattice.

In this paper, every semilattice has the bottom element 0 and ev-
ery meet-semilattice has the top element e. That is, a lattice means a
bounded lattice.

Recall that a complete lattice L is said to be continuousif x =\/ |, x
for all x € L, and L is said to be algebraic if = \/(| 2 N K(L)) for all
x € L, where | x ={y € L | y <z} and K(L) is the set of all compact
elements in L. Clearly, every algebraic lattice is continuous.

For terminology not introduced in this paper, we refer to [2, 3].
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Let (P, <) be a poset and z,y € P. We say that x is covered by y (or
y covers x), denoted by x—< y or y >z, if z < y and z < z < y implies
z=x.

An element a in a lattice L is called an atom if 0 —< a. We denote
the set of all atoms in L by A(L).

A lattice L is said to be atomic if the interval [0, z] contains an atom
for every x > 0, and atomistic if for each z € L, x =\/ S for a subset S
of A(L).

An element u in a lattice L is called join-irreducible if for any x,y € L,
u =z Vy implies u = x or u = y. We denote the set of all non-zero
join-irreducible elements in L by J(L). If a join-irreducible element has
a lower cover, then it is unique.

A lattice L is said to be strong if for any z,y € L and any u € J(L),
b<u<aVyimply u<y.

A lattice L is called a J-lattice if for each z € L, x =\/ S for a subset
S of J(L).

Further discussions of an atomistic lattice and an atomic J-lattice
can be found in [5].

LemMA 1.1. ([3]) If L is an atomistic meet-continuous lattice, then
L is a continuous lattice.

DEFINITION 1.2. A complete lattice L is said to be irredundant atom-
istic if for each z € L, there is a non-empty subset S of A(L) such that

xr=VS and \/5 <z
for every non-empty proper subset S’ of S.

LEmMA 1.3. If L is an irredundant atomistic complete lattice, then
J(L) = A(L).

Proof. 1t is clear that every atom is join-irreducible, that is, J(L) C
A(L).

To show that A(L) C J(L), suppose that u € J(L) and u is not an
atom. Since L is irreducible atomistic, there is a non-empty subset S

of A(L) such that v = \/S and \/ S’ < u for every non-empty proper
subset S" of S. So

u=aV(V(S—{a})) and V(S —{a}) #u
for any a € S. Since u is irreducible, u = a, and it is contradiction.
Hence « is an atom. ]

PRrROPOSITION 1.4. Any irredundant atomistic lattice is strong.
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Proof. Suppose that © < u <z Vy for z,y € L and v € J(L). Then
x = 0 since u is an atom, henceu <z Vy=0Vy=y. O

Let L be a lattice and x,y € L with x <y. Then we denote
r(z;y) ={z€ L |y<zVzand zAz=0}
For any =,y € L with z <y, if x = y, then
r(z;y) ={z€ L |xzANz=0}

and r(z;y) # 0 since 0 € r(z;y); otherwise, 0 & r(z;y). And it is clear
that y; < yo implies r(x;y1) 2 r(z;y2), hence if  has the complement
a', then 2/ € r(x;1) C r(z;y) for all y €7 z since z A 2/ = 0 and
y<l=uzVvd.

LEMMA 1.5. Let L be an atomic and a strong lattice. If r(a;u) # ()
for each u € J(L) and each a €| wN A(L), then J(L) = A(L).

Proof. 1t is clear that A(L) C J(L).

Let u € J(L). Since L is atomic, the interval [0, u] has an atom a,.
If a, < u, then r(ay;u) # ), hence there is z € L such that u < a, V z
and a, A z = 0. Since L is strong, u < z, and a, < z. It contradicts to
ay N\ z=0. Hence u = a, € A(L). O

PROPOSITION 1.6. Let L be an atomic strong complete J-lattice. If
r(a;u) # 0 for eachu € J(L) and each a €| uNA(L), then L is atomistic.

Proof. If x € L and « = 0, then \/(| 2N A(L)) = V0 = 0.

Let © € L with « # 0. Since L is J-lattice, there is a non-empty
subset S of J(L) such that x =\/S. S C A(L) and u < z for all u € S.
Hence we have

r=VS <V znAL) <,
that is, z = \/(] x N A(L)). O

COROLLARY 1.7. If L is an atomic strong meet-continuous J-lattice
with r(a;u) # 0 for each u € J(L) and each a €| un A(L), then L is
continuous.

Proof. If L is an atomic strong meet-continuous J-lattice with r(a; u) #
() for each u € J(L) and each a €| uN A(L), then L is an atomic meet-
continuous lattice, and hence L is continuous. ]

ProprosITION 1.8. Let L be a meet-continuous lattice. If every join-
irreducible element of L has the lower cover, then J(L) C K(L).
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Proof. Let w € J(L) and ug the lower cover of u and D a directed
subset of | u with u =\/D. Then d < for all d € D.

If d <wg for all d € D, then \/ D < ug < u,and it is a contradiction
for uw = \/ D. Hence there is d € D with d £ g, and up < d V uy < u.
Since up—< u = d V ug and u # ug, u =d and u € K(L). O

COROLLARY 1.9. If L is a meet-continuous J-lattice and every join-
irreducible element has the lower cover, then L is algebraic.

Proof. If L is a meet-continuous J-lattice of which every join-irreducible
element has the lower cover and « € L, then x = \/ S for some S C J(L).
Since J(L) C K (L) by Proposition 1.8, x =\/ S for some S C K(L). O

2. (A, f)-structure in an algebraic meet-continuous lattice

DEFINITION 2.1. Let P and @ be posets. A map f: P — @ is said
to be
(1) monotone if x <y in P implies f(z) < f(y) in Q;
(2) order-embedding if x <y in P if and only if f(x) < f(y) in Q.

If a map f: L — K between complete lattices is 1-1 and and pre-
serves arbitrary joins (or meets), then f is an order-embedding map.
Conversely, If f : L — K is an order-embedding map, then f is 1-1
and monotone, but f preserves neither arbitrary joins (including e) nor
arbitrary meets (including 0) in general.

For an adjunction (g, f) between posets P and @, we denote g - f :
P — @ or g - f briefly, and g is called the left adjoint of f and f is the
right adjoint of g([1]).

Let f: P — @Q be a map between posets and P is a complete lattice,
then f preserves arbitrary meets if and only if f is monotone and f has
a left adjoint.

Let g : Q — P be a map between posets and @ is a complete lattice,
then g preserves arbitrary joins if and only if g is monotone and g has a
right adjoint.

We remark that the complete lattice SubV of all subspaces of a vector
space V is not a distributive lattice, so SubV is not a frame, but SubV
is a meet-continuous lattice. So we can conclude that a meet-continuous
lattice need not be distributive.

LEMMA 2.2. Let P and () be posets and f : P — () an order-
embedding map.

(1) If g 4 f, then g is a left inverse of f, i.e., gf = 1p.
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(2) If f 4 g, then g is a left inverse of f.

LEMMA 2.3. Let P and () be posets and f : P — () a monotone map.
If D is a directed subset of P, then f(D) is a directed subset of Q.

PROPOSITION 2.4. Let L and K be complete lattices and g 4 f : L —
K. If f preserves directed joins, then x < y in K implies g(z) < g(y)
in L.

Proof. See [3]. O
The converse of the above proposition is not true in general.

COROLLARY 2.5. Let L and K be complete lattices and g - f : L —
K. If f preserves directed joins, then y < f(z) in K implies g(y) < x
in L. Hence g(ly f(x)) Cly o for all x € L.

Every atom in an atomistic meet-continuous lattice H is compact,
that is, A(H) C K(H). Hence every atomistic meet-continuous lattice
is algebraic since z = \/(l x N A(H)) < (|l 2N K(H)) < x.

The power set lattice P(L) of a complete lattice L is a frame; hence a
meet-continuous lattice, which is atomistic with A(P(L)) = {{z} | = €
L}, that is, P(L) is algebraic meet-continuous. The map |: L —
P(L) (z ] z) is 1-1 and has the left adjoint \/ : P(L) — L (S —
\V/ S), i.e., | is 1-1 meet-preserving map. Hence we can consider an 1-1
meet-preserving map from a complete lattice L to an algebraic meet-
continuous lattice H.

Let L be a complete lattice and H an algebraic complete lattice. If
f: L — H is amap with ¢ 4 f, then we denote

Ky(L) ={g(k) € L | k € K(H)}.

LEMMA 2.6. Let L be a complete lattice, H an algebraic complete
lattice and g 4 f : L — H. Then we have the following : for any x € L,

(1) LanKy(L)=g(l f(z) N K(H)),
2) fx) =V fz)NK(H)) <V f(Len K¢ (L))

Proof. (1) Let w €| ® N K¢(L). Then there is k € K(H) with g(k) =
u<z. Since g 1 f, k < f(x). Hence k €| f(x) N K(H) and u = g(k) €
o(1 f(x) N K ().

Conversely, let v € g(| f(x) N K(H)). Then there is k € K(H)
with £ < f(x) and v = g(k). Since ¢ 4 f, v = g(k) < x. Hence
uwel xNK¢(L).

(2) It is clear that f(x) = /(| f(x) N K(H)) since H is algebraic.
We need to show that \/(| f(z) N K(H)) <\ f(l xNK¢(L)).
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Since 1y < fgand | e N Ky¢(L) = g(] f(x) N K(H)) by (1), we have

VI fle)nK(H)) <V fg(l flx) N K(H)) =V f(l 20 Kf(L)).
O

PROPOSITION 2.7. Let L be a complete lattice, H an algebraic meet-
continuous lattice and g 1 f : L — H. Then f preserves directed joins if
and only if every element of K¢(L) is compact, that is, K;(L) C K(L).

Proof. Suppose that f preserves directed joins and u € Ky(L). Let
D be a directed subset of L with u < \/ D. Then there is k € K(H)
with g(k) = u. Since g 4 f and f preserves directed joins,

k< f(u) <f(VpD)=Vy f(D).
Since k is compact and f(D) is directed, there is d € D with k£ < f(d).
Hence u = g(k) < g(f(d)) <d, so u < u.
Conversely, suppose that u is a compact element for every u € Ky (L)
and D is a directed subset of L. Since f(\/; D) > \/ f(D), it remain

to show that f(\/;, D) <\ f(D).
Let o =\, D and k €| f(a) N K(H). Then k < f(a), and

g(k) <a=V,D.
Since g(k) is a compact element in L and D is directed, there is d € D
with g(k) < d, hence k < f(d) < \/ f(D). That is, k < \/ f(D) for
every k €| f(a) N K(H), so

fNL D)= fla) =Vu(l fla)nK(H)) < Vg f(D).
O

DEFINITION 2.8. Let H be a complete lattice. Then L is said to have
(A, f)-structure in H if L is a complete lattice with a map f: L — H
which 1-1 and preserves arbitrary meets. In particular, if L is a complete
lattice with L C H and the inclusion map ¢ : L — H preserves arbitrary
meets, then L is said to have \-structure in H.

If L has (A, f)-structure in H, then f is an order-embedding map
and has a unique left adjoint. We denoted the left adjoint of f by f'.

We note that f need not preserve arbitrary joins (meets, resp.).

If L has A\-structure in H, then L has (A, )-structure in H, where
NS = /Ay S for every S C L, because A\; S =i(A\;S) = Ay i(S) =
Ng S

LEMMA 2.9. If L has A-structure in a complete lattice H, then
V. S>\ySinH forany S C L.
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Proof. Let ¢ : L — H be the inclusion map. Then ¢ is monotone, and

Vi §=i(VpS) =2 VgilS) =Vgs
for any S C L. O

Let L have /\-structure in H. Then the inclusion map i : L — H
preserves arbitrary meet and i’ 4i: L — H. We denote k = i'(k) for
each k€ K(H) and K;(L)={ke L | ke K(H)}.

PROPOSITION 2.10. Let L have /\-structure in an algebraic meet-
continuous lattice H. Then \/; D € L for each directed subset D of L
if and only if k is compact for every k € K(H).

Proof. Let D be a directed subset of L. Since the inclusion map
i : L — H is order-embedding and D C L, i'(d) = i'(i(d)) = d for all
d € D, hence i'/(D) = D. Since \/; D € L and i' preserves arbitrary

joins,

VuD = ZZ(VH D)=V, il(D) =V, D.
Hence we have

iV D)=V D=VyD=\_,iD),
that is, ¢ preserves directed joins, and we have the equivalence of this
proposition by Proposition 2.7. 0

EXAMPLE 2.11. Let IdR be the complete lattice of all ideals of a ring

R. Since \;qp S =8 = Ap(p) S for every S C IdR, the inclusion map

i: IdR — P(R) preserves arbitrary meets. Hence IdR has A-structure
in P(R), and for every directed subset D of IdR,

By Proposition 2.10, every principal ideal is compact in IdR since {a} €
K(P(R)) for all a € R.

In the same way, a subspace generated by a singleton set is compact
in the complete lattice SubV of all subspace of a vector space V'

LEMMA 2.12. Let L have (A, f)-structure in an algebraic complete
lattice H. Then x = \/(] x N K;(L)) for every x € L.

Proof. From the definition of an algebraic lattice, f(x) = \/(| f(z)N
K(H)) for each € L. Since f' 4 f and f is order-embedding, f*
preserves arbitrary joins and f'f = 1. Hence

v = ff@) =V f@)NK(H))) =V (L f@)NK(H)) = V(] «NK (L))
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for every x € L. O

PROPOSITION 2.13. Let L have (), f)-structure in an algebraic meet-
continuous lattice H. If f preserves directed joins, then L is algebraic.

Proof. Suppose that f preserves directed joins and let x € L. Then
K¢(L) C K(L) by Proposition 2.7, hence we have

e =Vl 2N KAL) <V 2N K(L) < o.
That is, x = \/(| N K(L)), and L is algebraic. O

COROLLARY 2.14. Let L have (), f)-structure in an algebraic meet-
continuous lattice H. Then we have the following :

(1) If f preserves directed joins, then L is continuous.
(2) If every element of K¢(L) is compact, then L is algebraic.
(3) If every element of K¢(L) is compact, then L is continuous.

COROLLARY 2.15. Let L have \-structure in an algebraic meet-
continuous lattice H.

(1) If k is compact for every k € K(H), then L is algebraic.

(2) If k is compact for every k € K(H), then L is continuous.

(3) If \Vy D € L for every directed subset D of L, then L is algebraic.
(4) If\Vy D € L for every directed subset D of L, then L is continuous.
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