JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 4, December 2007

ALGEBRAIC MEET CONTINUOUS LATTICE

SEUNG ON LEE* AND YONG HO YON **

ABSTRACT. This paper is sequel to [3]. In this paper, we discuss some properties of an algebraic meet-continuous lattice and study a complete lattice which can be embedded into an algebraic meetcontinuous lattice.

1. Strong atomistic complete lattice

We recall that an algebraic lattice is just a sublattice of a power of the two point chain with respect to an arbitrary meets and directed joins. In 1969, Lawson has shown that continuous lattices are precisely sublattices of a power of the unit interval under the same operations as above. In 1972, Scott has named a concept of continuous lattices and has shown the equivalence between continuous lattices and injective T_0 -spaces([4]).

Every complete lattice L can be embedded into an atomistic Boolean lattice $\mathcal{P}(L)$, where $\mathcal{P}(L)$ is the power set of L, but the complete lattice L is not algebraic or continuous. We study a complete lattice which is embedded into an algebraic meet-continuous lattice.

In this paper, every semilattice has the bottom element 0 and every meet-semilattice has the top element e. That is, a lattice means a bounded lattice.

Recall that a complete lattice L is said to be *continuous* if $x = \bigvee \downarrow_w x$ for all $x \in L$, and L is said to be *algebraic* if $x = \bigvee (\downarrow x \cap K(L))$ for all $x \in L$, where $\downarrow x = \{y \in L \mid y \leq x\}$ and K(L) is the set of all compact elements in L. Clearly, every algebraic lattice is continuous.

For terminology not introduced in this paper, we refer to [2, 3].

Received September 28, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 01A05, 01A50, 01A70, 01A85. Key words and phrases: join-irreducible, *J*-lattice, meet-continuous lattice, adjunction, algebraic lattice.

Seung On Lee and Yong Ho Yon

Let (P, \leq) be a poset and $x, y \in P$. We say that x is covered by y (or y covers x), denoted by $x \prec y$ or $y \succ x$, if x < y and $x \leq z < y$ implies z = x.

An element a in a lattice L is called an *atom* if $0 \prec a$. We denote the set of all atoms in L by A(L).

A lattice L is said to be *atomic* if the interval [0, x] contains an atom for every x > 0, and *atomistic* if for each $x \in L$, $x = \bigvee S$ for a subset S of A(L).

An element u in a lattice L is called *join-irreducible* if for any $x, y \in L$, $u = x \lor y$ implies u = x or u = y. We denote the set of all non-zero join-irreducible elements in L by J(L). If a join-irreducible element has a lower cover, then it is unique.

A lattice L is said to be strong if for any $x, y \in L$ and any $u \in J(L)$, $b < u \leq x \lor y$ imply $u \leq y$.

A lattice L is called a *J*-lattice if for each $x \in L$, $x = \bigvee S$ for a subset S of J(L).

Further discussions of an atomistic lattice and an atomic J-lattice can be found in [5].

LEMMA 1.1. ([3]) If L is an atomistic meet-continuous lattice, then L is a continuous lattice.

DEFINITION 1.2. A complete lattice L is said to be *irredundant atomistic* if for each $x \in L$, there is a non-empty subset S of A(L) such that

$$x = \bigvee S$$
 and $\bigvee S' < x$

for every non-empty proper subset S' of S.

LEMMA 1.3. If L is an irredundant atomistic complete lattice, then J(L) = A(L).

Proof. It is clear that every atom is join-irreducible, that is, $J(L) \subseteq A(L)$.

To show that $A(L) \subseteq J(L)$, suppose that $u \in J(L)$ and u is not an atom. Since L is irreducible atomistic, there is a non-empty subset S of A(L) such that $u = \bigvee S$ and $\bigvee S' < u$ for every non-empty proper subset S' of S. So

$$u = a \lor (\bigvee (S - \{a\}))$$
 and $\bigvee (S - \{a\}) \neq u$

for any $a \in S$. Since u is irreducible, u = a, and it is contradiction. Hence u is an atom.

PROPOSITION 1.4. Any irredundant atomistic lattice is strong.

Proof. Suppose that $x < u \le x \lor y$ for $x, y \in L$ and $u \in J(L)$. Then x = 0 since u is an atom, hence $u \le x \lor y = 0 \lor y = y$.

Let L be a lattice and $x, y \in L$ with $x \leq y$. Then we denote

$$r(x;y) = \{ z \in L \mid y \le x \lor z \text{ and } x \land z = 0 \}.$$

For any $x, y \in L$ with $x \leq y$, if x = y, then

$$r(x;y) = \{z \in L \mid x \land z = 0\}$$

and $r(x; y) \neq \emptyset$ since $0 \in r(x; y)$; otherwise, $0 \notin r(x; y)$. And it is clear that $y_1 \leq y_2$ implies $r(x; y_1) \supseteq r(x; y_2)$, hence if x has the complement x', then $x' \in r(x; 1) \subseteq r(x; y)$ for all $y \in \uparrow x$ since $x \land x' = 0$ and $y \leq 1 = x \lor x'$.

LEMMA 1.5. Let L be an atomic and a strong lattice. If $r(a; u) \neq \emptyset$ for each $u \in J(L)$ and each $a \in \downarrow u \cap A(L)$, then J(L) = A(L).

Proof. It is clear that $A(L) \subseteq J(L)$.

Let $u \in J(L)$. Since L is atomic, the interval [0, u] has an atom a_u . If $a_u < u$, then $r(a_u; u) \neq \emptyset$, hence there is $z \in L$ such that $u \le a_u \lor z$ and $a_u \land z = 0$. Since L is strong, $u \le z$, and $a_u \le z$. It contradicts to $a_u \land z = 0$. Hence $u = a_u \in A(L)$.

PROPOSITION 1.6. Let L be an atomic strong complete J-lattice. If $r(a; u) \neq \emptyset$ for each $u \in J(L)$ and each $a \in \downarrow u \cap A(L)$, then L is atomistic.

Proof. If $x \in L$ and x = 0, then $\bigvee (\downarrow x \cap A(L)) = \lor \emptyset = 0$.

Let $x \in L$ with $x \neq 0$. Since L is J-lattice, there is a non-empty subset S of J(L) such that $x = \bigvee S$. $S \subseteq A(L)$ and $u \leq x$ for all $u \in S$. Hence we have

$$x = \bigvee S \le \bigvee (\downarrow x \cap A(L)) \le x,$$

that is, $x = \bigvee (\downarrow x \cap A(L)).$

COROLLARY 1.7. If L is an atomic strong meet-continuous J-lattice with $r(a; u) \neq \emptyset$ for each $u \in J(L)$ and each $a \in \downarrow u \cap A(L)$, then L is continuous.

Proof. If L is an atomic strong meet-continuous J-lattice with $r(a; u) \neq \emptyset$ for each $u \in J(L)$ and each $a \in \downarrow u \cap A(L)$, then L is an atomic meet-continuous lattice, and hence L is continuous.

PROPOSITION 1.8. Let L be a meet-continuous lattice. If every joinirreducible element of L has the lower cover, then $J(L) \subseteq K(L)$.

403

Proof. Let $u \in J(L)$ and u_0 the lower cover of u and D a directed subset of $\downarrow u$ with $u = \bigvee D$. Then $d \leq u$ for all $d \in D$.

If $d \leq u_0$ for all $d \in D$, then $\bigvee D \leq u_0 < u$, and it is a contradiction for $u = \bigvee D$. Hence there is $d \in D$ with $d \not\leq u_0$, and $u_0 < d \lor u_0 \leq u$. Since $u_0 \prec u = d \lor u_0$ and $u \neq u_0$, u = d and $u \in K(L)$.

COROLLARY 1.9. If L is a meet-continuous J-lattice and every joinirreducible element has the lower cover, then L is algebraic.

Proof. If L is a meet-continuous J-lattice of which every join-irreducible element has the lower cover and $x \in L$, then $x = \bigvee S$ for some $S \subseteq J(L)$. Since $J(L) \subseteq K(L)$ by Proposition 1.8, $x = \bigvee S$ for some $S \subseteq K(L)$. \Box

2. (Λ, f) -structure in an algebraic meet-continuous lattice

DEFINITION 2.1. Let P and Q be posets. A map $f: P \to Q$ is said to be

(1) monotone if $x \leq y$ in P implies $f(x) \leq f(y)$ in Q;

(2) order-embedding if $x \leq y$ in P if and only if $f(x) \leq f(y)$ in Q.

If a map $f: L \to K$ between complete lattices is 1-1 and and preserves arbitrary joins (or meets), then f is an order-embedding map. Conversely, If $f: L \to K$ is an order-embedding map, then f is 1-1 and monotone, but f preserves neither arbitrary joins (including e) nor arbitrary meets (including 0) in general.

For an adjunction (g, f) between posets P and Q, we denote $g \dashv f$: $P \rightarrow Q$ or $g \dashv f$ briefly, and g is called the *left adjoint* of f and f is the *right adjoint* of g([1]).

Let $f: P \to Q$ be a map between posets and P is a complete lattice, then f preserves arbitrary meets if and only if f is monotone and f has a left adjoint.

Let $g: Q \to P$ be a map between posets and Q is a complete lattice, then g preserves arbitrary joins if and only if g is monotone and g has a right adjoint.

We remark that the complete lattice SubV of all subspaces of a vector space V is not a distributive lattice, so SubV is not a frame, but SubVis a meet-continuous lattice. So we can conclude that a meet-continuous lattice need not be distributive.

LEMMA 2.2. Let P and Q be posets and $f : P \to Q$ an orderembedding map.

(1) If $g \dashv f$, then g is a left inverse of f, i.e., $gf = 1_P$.

(2) If $f \dashv g$, then g is a left inverse of f.

LEMMA 2.3. Let P and Q be posets and $f: P \to Q$ a monotone map. If D is a directed subset of P, then f(D) is a directed subset of Q.

PROPOSITION 2.4. Let L and K be complete lattices and $g \dashv f : L \rightarrow K$. If f preserves directed joins, then $x \ll y$ in K implies $g(x) \ll g(y)$ in L.

Proof. See [3].

The converse of the above proposition is not true in general.

COROLLARY 2.5. Let L and K be complete lattices and $g \dashv f : L \rightarrow K$. If f preserves directed joins, then $y \ll f(x)$ in K implies $g(y) \ll x$ in L. Hence $g(\downarrow_w f(x)) \subseteq \downarrow_w x$ for all $x \in L$.

Every atom in an atomistic meet-continuous lattice H is compact, that is, $A(H) \subseteq K(H)$. Hence every atomistic meet-continuous lattice is algebraic since $x = \bigvee(\downarrow x \cap A(H)) \leq \bigvee(\downarrow x \cap K(H)) \leq x$.

The power set lattice $\mathcal{P}(L)$ of a complete lattice L is a frame; hence a meet-continuous lattice, which is atomistic with $A(\mathcal{P}(L)) = \{\{x\} \mid x \in L\}$, that is, $\mathcal{P}(L)$ is algebraic meet-continuous. The map $\downarrow : L \to \mathcal{P}(L) \ (x \mapsto \downarrow x)$ is 1-1 and has the left adjoint $\bigvee : \mathcal{P}(L) \to L \ (S \mapsto \bigvee S)$, i.e., \downarrow is 1-1 meet-preserving map. Hence we can consider an 1-1 meet-preserving map from a complete lattice L to an algebraic meet-continuous lattice H.

Let L be a complete lattice and H an algebraic complete lattice. If $f: L \to H$ is a map with $g \dashv f$, then we denote

$$K_f(L) = \{g(k) \in L \mid k \in K(H)\}.$$

LEMMA 2.6. Let L be a complete lattice, H an algebraic complete lattice and $g \dashv f : L \rightarrow H$. Then we have the following : for any $x \in L$,

(1) $\downarrow x \cap K_f(L) = g(\downarrow f(x) \cap K(H)),$

(2) $f(x) = \bigvee (\downarrow f(x) \cap K(H)) \le \bigvee f(\downarrow x \cap K_f(L)).$

Proof. (1) Let $u \in \downarrow x \cap K_f(L)$. Then there is $k \in K(H)$ with $g(k) = u \leq x$. Since $g \dashv f, k \leq f(x)$. Hence $k \in \downarrow f(x) \cap K(H)$ and $u = g(k) \in g(\downarrow f(x) \cap K(H))$.

Conversely, let $u \in g(\downarrow f(x) \cap K(H))$. Then there is $k \in K(H)$ with $k \leq f(x)$ and u = g(k). Since $g \dashv f$, $u = g(k) \leq x$. Hence $u \in \downarrow x \cap K_f(L)$.

(2) It is clear that $f(x) = \bigvee (\downarrow f(x) \cap K(H))$ since H is algebraic. We need to show that $\bigvee (\downarrow f(x) \cap K(H)) \leq \bigvee f(\downarrow x \cap K_f(L)).$

Seung On Lee and Yong Ho Yon

Since
$$1_H \leq fg$$
 and $\downarrow x \cap K_f(L) = g(\downarrow f(x) \cap K(H))$ by (1), we have
 $\bigvee (\downarrow f(x) \cap K(H)) \leq \bigvee fg(\downarrow f(x) \cap K(H)) = \bigvee f(\downarrow x \cap K_f(L)).$

PROPOSITION 2.7. Let L be a complete lattice, H an algebraic meetcontinuous lattice and $g \dashv f : L \to H$. Then f preserves directed joins if and only if every element of $K_f(L)$ is compact, that is, $K_f(L) \subseteq K(L)$.

Proof. Suppose that f preserves directed joins and $u \in K_f(L)$. Let D be a directed subset of L with $u \leq \bigvee D$. Then there is $k \in K(H)$ with g(k) = u. Since $g \dashv f$ and f preserves directed joins,

$$k \le f(u) \le f(\bigvee_L D) = \bigvee_H f(D).$$

Since k is compact and f(D) is directed, there is $d \in D$ with $k \leq f(d)$. Hence $u = g(k) \leq g(f(d)) \leq d$, so $u \ll u$.

Conversely, suppose that u is a compact element for every $u \in K_f(L)$ and D is a directed subset of L. Since $f(\bigvee_L D) \ge \bigvee_H f(D)$, it remain to show that $f(\bigvee_L D) \le \bigvee_H f(D)$.

Let $\alpha = \bigvee_L D$ and $k \in \int f(\alpha) \cap K(H)$. Then $k \leq f(\alpha)$, and

$$g(k) \le \alpha = \bigvee_L D.$$

Since g(k) is a compact element in L and D is directed, there is $d \in D$ with $g(k) \leq d$, hence $k \leq f(d) \leq \bigvee_H f(D)$. That is, $k \leq \bigvee_H f(D)$ for every $k \in \downarrow f(\alpha) \cap K(H)$, so

$$f(\bigvee_L D) = f(\alpha) = \bigvee_H (\downarrow f(\alpha) \cap K(H)) \le \bigvee_H f(D).$$

DEFINITION 2.8. Let H be a complete lattice. Then L is said to have (\bigwedge, f) -structure in H if L is a complete lattice with a map $f : L \to H$ which 1-1 and preserves arbitrary meets. In particular, if L is a complete lattice with $L \subseteq H$ and the inclusion map $i : L \to H$ preserves arbitrary meets, then L is said to have \bigwedge -structure in H.

If L has (\bigwedge, f) -structure in H, then f is an order-embedding map and has a unique left adjoint. We denoted the left adjoint of f by f^l .

We note that f need not preserve arbitrary joins (meets, resp.). If L has \wedge -structure in H, then L has (\wedge, i) -structure in H, where $\wedge_L S = \wedge_H S$ for every $S \subseteq L$, because $\wedge_L S = i(\wedge_L S) = \wedge_H i(S) = \wedge_H S$.

LEMMA 2.9. If L has \bigwedge -structure in a complete lattice H, then $\bigvee_L S \ge \bigvee_H S$ in H for any $S \subseteq L$.

Proof. Let $i: L \to H$ be the inclusion map. Then i is monotone, and

$$\bigvee_L S = i(\bigvee_L S) \ge \bigvee_H i(S) = \bigvee_H S$$

for any $S \subseteq L$.

407

Let L have \bigwedge -structure in H. Then the inclusion map $i : L \to H$ preserves arbitrary meet and $i^l \dashv i : L \to H$. We denote $\hat{k} = i^l(k)$ for each $k \in K(H)$ and $K_i(L) = \{\hat{k} \in L \mid k \in K(H)\}$.

PROPOSITION 2.10. Let L have \bigwedge -structure in an algebraic meetcontinuous lattice H. Then $\bigvee_H D \in L$ for each directed subset D of L if and only if \hat{k} is compact for every $k \in K(H)$.

Proof. Let D be a directed subset of L. Since the inclusion map $i: L \to H$ is order-embedding and $D \subseteq L$, $i^l(d) = i^l(i(d)) = d$ for all $d \in D$, hence $i^l(D) = D$. Since $\bigvee_H D \in L$ and i^l preserves arbitrary joins,

$$\bigvee_H D = i^l (\bigvee_H D) = \bigvee_L i^l (D) = \bigvee_L D.$$

Hence we have

$$i(\bigvee_L D) = \bigvee_L D = \bigvee_H D = \bigvee_L i(D),$$

that is, i preserves directed joins, and we have the equivalence of this proposition by Proposition 2.7.

EXAMPLE 2.11. Let IdR be the complete lattice of all ideals of a ring R. Since $\bigwedge_{IdR} S = \bigcap S = \bigwedge_{\mathcal{P}(R)} S$ for every $S \subseteq IdR$, the inclusion map $i: IdR \to \mathcal{P}(R)$ preserves arbitrary meets. Hence IdR has \bigwedge -structure in $\mathcal{P}(R)$, and for every directed subset \mathcal{D} of IdR,

$$\bigvee_{\mathcal{P}(R)} \mathcal{D} = \bigcup \mathcal{D} \in IdR.$$

By Proposition 2.10, every principal ideal is compact in IdR since $\{a\} \in K(\mathcal{P}(R))$ for all $a \in R$.

In the same way, a subspace generated by a singleton set is compact in the complete lattice SubV of all subspace of a vector space V

LEMMA 2.12. Let L have (\bigwedge, f) -structure in an algebraic complete lattice H. Then $x = \bigvee (\downarrow x \cap K_f(L))$ for every $x \in L$.

Proof. From the definition of an algebraic lattice, $f(x) = \bigvee (\downarrow f(x) \cap K(H))$ for each $x \in L$. Since $f^l \dashv f$ and f is order-embedding, f^l preserves arbitrary joins and $f^l f = 1_L$. Hence

$$x = f^l f(x) = f^l (\bigvee (\downarrow f(x) \cap K(H))) = \bigvee f^l (\downarrow f(x) \cap K(H)) = \bigvee (\downarrow x \cap K_f(L))$$

for every $x \in L$.

PROPOSITION 2.13. Let L have (Λ, f) -structure in an algebraic meetcontinuous lattice H. If f preserves directed joins, then L is algebraic.

Proof. Suppose that f preserves directed joins and let $x \in L$. Then $K_f(L) \subseteq K(L)$ by Proposition 2.7, hence we have

$$x = \bigvee (\downarrow x \cap K_f(L)) \le \bigvee (\downarrow x \cap K(L)) \le x.$$

That is, $x = \bigvee (\downarrow x \cap K(L))$, and L is algebraic.

COROLLARY 2.14. Let L have (\bigwedge, f) -structure in an algebraic meetcontinuous lattice H. Then we have the following :

- (1) If f preserves directed joins, then L is continuous.
- (2) If every element of $K_f(L)$ is compact, then L is algebraic.
- (3) If every element of $K_f(L)$ is compact, then L is continuous.

COROLLARY 2.15. Let L have \bigwedge -structure in an algebraic meetcontinuous lattice H.

- (1) If \hat{k} is compact for every $k \in K(H)$, then L is algebraic.
- (2) If \hat{k} is compact for every $k \in K(H)$, then L is continuous.
- (3) If $\bigvee_H D \in L$ for every directed subset D of L, then L is algebraic.
- (4) If $\bigvee_H D \in L$ for every directed subset D of L, then L is continuous.

References

- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
- [2] P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics No. 3, Cambridge University Press, 1982.
- [3] S. O. Lee, Y. H. Yon, Some Structures on a Complete Lattice, J. of the Chungcheong Mathematical Society, 20, no.3 (2007), 211-222.
- [4] D. S. Scott, Continuous Lattices, Lect. Notes in Math., 274, Springer Verlag, 1972, 97-136.
- [5] A. Walendziak, On Atomistic Lattices, Portugaliae Mathematica, 51, Fasc. 4, 1994, 583-585.

408

*

Department of Mathematics Chungbuk National University, Chungbuk 361-763, Republic of Korea *E-mail*: solee@chungbuk.ac.kr

**

Engineering Education Innovation Center Mokwon University Daejeon, 302-729, Republic of Korea *E-mail*: yhyon@mokwon.ac.kr