Studies on Whitening and UV Damage Protection Effect of the Pterin Compounds

테린계 화합물의 미백 및 자외선 손상방어 효능에 관한 연구

  • Published : 2007.03.30

Abstract

(6R)-5,6,7,8-tetrahydrobiopterin ($6-BH_4$) cofactor is essential for various process, and is present in probably every cell or tissue of higher organism. $6-BH_4$ is required lot various enzyme activities, and for less defined functions at the cellular level. And it is well known about the antioxidant effects as a non-protein compound. Recently, scientists proposed another roles for $6-BH_4$ in melanogenesis. $6-BH_4$ is a well known tyrosinase inhibitor. In this study, we found that methyl-$BH_4$ and $6-BH_4$ have antioxidant activities and inhibitory activity for melanin synthesis. These pterin compounds were not toxic in HaCaT and B16F10 cells and showed scavenging activity against DPPH radicals. We also showed that pterin compounds decreased protein levels of tyrosinase and TRP-1. In a clinical test, pterin compounds showed the significant skin whiteining effect after treatment for 3 weeks. Furthermore pterin compounds significantly suppressed the UVB-induced expression of $PGE_2$ and IL-6 genes induced UVB In HaCaT and inhibited UVB-induced melanogenesis in B16F10 cells. These results showed the effect of pterin compounds as a cosmeceutical ingredient.

테린 계열의 화합물은 생체 내에 존재하여 여러 가지 효소들의 cofactor로써의 역할을 담당하며, 활성 산소에 대하여 제거 작용을 갖는 비단백질 화합물로서 널리 알려져 있다. 테린 계열의 화합물은 (6R)-5,6,7,8-tetrahydrobiopterin (이하 $6-BH_4$)인 완전히 환원된 형태로 활성을 가지며 공기에 노출되었을 경우 쉽게 산화 형태로 전환된다. $6-BH_4$의 결핍 증상으로서 정신 질환관련된 파킨슨 질환, 알츠하이머 질환, 우울증 등의 증상이 있으며, 피부 질환으로는 백반증이 있다. 최근에는 $6-BH_4$의 멜라닌합성 저해와 관련된 연구가 수행되어지고 있다. 본 연구에서는 $6-BH_4$와 유도체인 (6R)-5-methyl-5,6,7,8-tetrahydrobiopterin (이하 methyl-$BH_4$)의 항산화 효능과 미백 효능 및 자외선 손상 방어 효능에 관한 연구를 수행하였다. 테린 화합물의 DPPH 라디칼소거능 평가 결과 항산화 표준 물질인 quercetin과 유사한 효능을 갖는 항산화 물질임을 확인하였으며, 피부 세포주에서의 세포독성이 없는 안전한 물질임을 확인하였다. 또한 미백 효능을 평가하기 위하여 효소 수준에서의 tyrosinase 활성 저해능과 세포수준에서의 tyrosinase, TRP-1단백질의 발현 저해 효능을 확인하였다. in vivo에서의 미백 효능 평가 결과 역시 증류수 처리군과 비교시 테린 화합물 처리군에서 멜라닌 수치가 감소하는 것을 확인할 수 있었다. 테린 화합물의 또 다른 효능으로서 항산화효능을 기반으로 하는 자외선 손상 방어 효능을 평가한 결과, 자외선에 의해 유도되는 cytokines의 발현양을 감소시켰으며, 멜라닌의 합성을 저해하는 것을 확인할 수 있었다. 이러한 결과들로부터 테린 화합물의 화장료적 특성을 확인할 수 있었다.

Keywords

References

  1. C. A. Nichol, G. K. Smith, and D. S. Duch, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin, Annu. Rev. Biochem., 54, 729 (1985) https://doi.org/10.1146/annurev.bi.54.070185.003501
  2. B. Thony, G. Auerbach, and N. Blau, Tetrahydrobiopterin biosynthesis, regeneration and functions, Biochem., J., 1, 1 (2000)
  3. O. A. Andersen and T. E. Hough, Crystal structure of the ternary complex of the catalytic domain of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine, and its implications for the mechanism of catalysis and substrate activation, J. Mol. Biol., 320, 1095 (2002) https://doi.org/10.1016/S0022-2836(02)00560-0
  4. T. Flatmark, B. Almas, P. M. Knappskog, S. V. Berge, R. M. Svebak, R. Chehin, A. Muga, and A. Martinez, Tyrosine hydroxylase binds tetrahydrobiopterin cofactor with negative cooperativity, as shown by kinetic analyses and surface plasmon resonance detection, Eur. J. Biochem., 262, 840 (1999) https://doi.org/10.1046/j.1432-1327.1999.00445.x
  5. K. U. Schallreuter, J. M. Wood, I. Ziegler, K. R. Lemke, M. R. Pittelkow, N. J. Lindsey, and M. Gutlich, Defective tetrahydrobiopterin and catecholamine biosynthesis in the depigmentation disorder vitiligo, Biochim. Biophys. Acta, 1226, 181 (1994) https://doi.org/10.1016/0925-4439(94)90027-2
  6. H. Rokos, K. U. Schallreuter-Wood, and W. D. Beazley, Oxidative stress in vitiligo: photo-oxidation of pterins produces H(2)O(2) and pterin-6-carboxylic acid, Biochem. Biophys. Res. Commun., 12, 805 (2002)
  7. J. M. Wood, K. U. Schallreuter-Wood, N. J. Lindsey, S. Callaghan, and M. L. Gardner, A specific tetrahydrobiopterin binding domain on tyrosinase controls melanogenesis, Biochem. Biophys. Res. Commun., 17, 480 (1995)
  8. J. H. Jung, S. W. Choi, and S. Han, Indirect oxidation of 6-tetrahydrobiopterin by tyrosinase, Biochem. Biophys. Res. Commun., 314, 937 (2004) https://doi.org/10.1016/j.bbrc.2003.12.184
  9. B. Gasowska, H. Wojtasek, J. Hurek, M. Drag, K. Nowak, and P. Kafarski, Redox reaction between amino-(3.4-dihydroxyphenyl) methyl phosphonic acid and dopaquinone is responsible for the apparent inhibitory effect on tyrosinase, Eur. J. Biochem., 269, 4098 (2002) https://doi.org/10.1046/j.1432-1033.2002.03103.x
  10. C. Jimenez-Cervantes, F. Solano, T. Kobayashi, K. Urabe, V. J. Hearing, J. A. Lozano, and J. C. Garcia-Borron, A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1), J. Biol. Chem., 269, 17993 (1994)
  11. A. Liber, Use of alpha-melanocyte-stimulating-hormone analogue to improve alpha-melanocyte-stimulating-hormone receptor binding assay in human melanoma, Pigment. Cell Res., 2, 510 (1989) https://doi.org/10.1111/j.1600-0749.1989.tb00247.x
  12. J. Cabanes, S. Chazarra, and F. Garcia-Carmona, Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase, J. Pharm. Pharmacol., 46, 982 (1994) https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  13. M. Veronique and B. Friedrich, Tyrosinase and related protein in mammalian pigmentation, FEBS Letters, 381. 165 (1996) https://doi.org/10.1016/0014-5793(96)00109-3
  14. V. J. Hearing and K. Tsukamoto, Biochemical control of melanogenesis and melanosomal organization, J. Invest. Dermatol., 4, 24 (1999) https://doi.org/10.1038/sj.jidsp.5640176
  15. H. J. Park, H. J. Kim, H. J. Kwon, J. Y. Lee, B. K. Cho, W. J. Lee, Y. Yang, and D. H. Cho, UVB-induced interleukin-18 production is downregulated by tannic acids in human HaCaT keratinocytes, Exp. Dermatol., 15, 589 (2006) https://doi.org/10.1111/j.1600-0625.2006.00449.x
  16. M. Na, B. S. Min, R. B. An, K. S. Song, Y. H. Seong, and K. Bae, Effect of Astilbe koreana on ultraviolet B (UVB)-induced inflammatory response in human keratinocytes, Biol. Pharm. Bull., 27, 1301 (2004) https://doi.org/10.1248/bpb.27.1301
  17. M. W. Greaves and R. D. Camp, Prostaglandins, leukotrienes, phospholipase, platelet activating factor, and cytokines: an integrated approach to inflammation of human skin, Arch. Dermatol. Res., 280, 33 (1988) https://doi.org/10.1007/BF00412686
  18. Y. Saral, B. Uyar, A. Ayar, and M. Naziroglu, Protective effects of topical alpha-tocopherol acetate on UVB irradiation in guinea pigs: importance of free radicals, Physiol. Res., 51, 285, (2002)
  19. S. K. Katiyar, F. Afaq, A. Perez, and H. Mukhtar, Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress, Carcinogenesis, 22, 287 (2001) https://doi.org/10.1093/carcin/22.2.287
  20. F. Afaq, V. M. Adhami, and N. Ahmad, Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice, Toxicol. Appl. Pharmacol., 1, 28, (2003) https://doi.org/10.1016/0041-008X(59)90145-0
  21. K. Furuno, T. Akasako, and N. Sugihara, The contribution of the pyrogallol moiety to the super-oxide radical scavenging activity of flavonoids, Biol. Pharm. Bull., 25, 19 (2002) https://doi.org/10.1248/bpb.25.19
  22. T. Mosmann, Rapid colorimetric assay for the cellular growth and survival application to proliferation and cytotoxic assay, J. Immunol. Methods, 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  23. J. Xia, X. Song, Z. Bi, W. Chu, and Y. Wan, UV-induced NF-kappaB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro, Int. J. Mol. Med., 16, 943 (2005)
  24. J. N. Rodriguez-Lopez, L. G. Fenoll, M. J. Penalver, P. A. Garcia-Ruiz, R, Varon, F. Martinez-Ortiz, F. Garcia-Canovas, and J. Tudela, Tyrosinase action on monophenols: evidence for direct enzymatic release of o-diphenol, Biochim. Biophys. Acta, 1548, 238 (2001) https://doi.org/10.1016/S0167-4838(01)00237-0