SSR Marker Linked to f Locus in Soybean

  • Nam, Ki-Chul (Division of Applied Life Science, Agronomy major, Research Institute of Life Sci., Gyeonsang National University) ;
  • Kim, Myung-Sik (Division of Applied Life Science, Agronomy major, Research Institute of Life Sci., Gyeonsang National University) ;
  • Jeong, Woo-Hyeun (Division of Applied Life Science, Agronomy major, Research Institute of Life Sci., Gyeonsang National University) ;
  • Kim, Seok-Hyeon (Division of Applied Life Science, Agronomy major, Research Institute of Life Sci., Gyeonsang National University) ;
  • Chung, Jong-Il (Division of Applied Life Science, Agronomy major, Research Institute of Life Sci., Gyeonsang National University)
  • Published : 2007.03.31

Abstract

Soybean has a morphological type with a broadened and flattened stem. Fasciation has been suggested as a new gene for soybean research. SSR marker linked to the $\Large f$ locus that controls fasciation phenotype has not identified within 10 cM. A mapping population consisting of 94 $F_2$ progenies was derived from a cross between wild type Clark (FF) and fasciation mutant C32 (${\Large f}{\Large f}$). The phenotype of $F_2$ individual plants was recorded at R2 and R3 growth stage from field. One-thousand 10-mer oligonucleotide RAPD primers and 29 SSR primers selected from the D1b+W of the soybean molecular linkage map were used. A genetic map was constructed from the segregating 35 RAPD, four SSR markers and one phenotypic(wild type/fasciation) marker. The segregation ratios of 3 : 1 observed in the $F_2$ population and the Chi-square values strongly suggest that the fasciation trait is controlled by a single recessive gene. Satt537 marker was linked to $\Large f$ locus at a distance of 9.6 cM. Assignment of the $\Large f$ locus to linkage group D1b+W and identification of markers can be used as an initial step for fine mapping of the $\Large f$ gene.

Keywords

References

  1. Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1995. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132 : 131-1139
  2. Albertsen, M. C., T. M. Curry, R. G. Palmer, and Lamotte. 1983. Genetics and comparative growth morphology of fasciation in soybeans (Glycine max [L.] Merr.). Bot. Gaz. (Chicago) 144 : 263-275 https://doi.org/10.1086/337372
  3. Apuya, N. R., B. L. Frazier, P. Keirn, E. J. E. J. Roth, and K. G. Lark. 1988. Restriction fragment length polymo­rphisms as genetic marker in soybean. Theor Appl Genet. 75 : 889-901
  4. Cregan, P. B., T. Jarvik, A. L. Bush, R. C. Shoemaker, K. G. Lark, A. L. Kahler, N. Kaya, T. T. VanToai, D. G. Lohnes, Jongil Chung, and J. E. Spech. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39 : 1464-­1490 https://doi.org/10.2135/cropsci1999.3951464x
  5. Hedges, B. R., J. M. Sellner, T. E. Devine, and R. G. Palmer. 1990. Assigning isocitrate dehydrogenase to linkage group 11 in soybean. Crop Sci. 30 : 940-942 https://doi.org/10.2135/cropsci1990.0011183X003000040037x
  6. Kim, M. S., M. J. Park, J. G. Hwang, S. H. Jo, M. S. Ko, and J. I. Chung. 2004. Identification of molecular markers linked to Ti locus in soybean. Korean J. Crop Sci. 49(5) : 419-422
  7. Kim, M. S., M. J. Park, W. H. Jeong, K. N. Nam, and J. I. Chung. 2006. Identification of molecular markers linked to Lj2 locus in soybean. Korean J. Crop Sci. 51 (2) : 169-172
  8. Karakaya, H. C., Y. Tang, P. B. Cregan, and H. Knap. 2002. Molecular mapping of the fasciation mutation in soybean, Glycine max (Leguminosae). American J. of Botany. 89(4) : 559-566 https://doi.org/10.3732/ajb.89.4.559
  9. Keirn, P, J. M. Schupp, S. E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira, and D. M. Webb. 1997. A high density soybean genetic map based on AFLP markers. Crop Sci. 37 : 537-543 https://doi.org/10.2135/cropsci1997.0011183X003700020038x
  10. Kosambi, D. D. 1944. The estimation of map distance from recombination values. Ann. Eugen. 12 : 172-175
  11. Lander, E., P. Green, J. Abrahamson, A. Barlow, .M. Daly, S. Lincoln, and L. Newburg. 1987. MAPMAKER : An inte­ractive computer package for constructing primary genetic linkage maps of experiment and natural populations. Geno­mics. 1 : 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  12. Lark, K. G., J. M. Weisemen, B. F. Mathews, R. Palmer, K. Chase, and T. Macalma. 1993. A genetic map of soybean using an intraspecific cross of two cultivars : Minsoy and Noir. Theor Appl Genet. 86 : 901-906
  13. Leffel, R. C., R. L. Bernard, and J. O. Yocum. 1993. Agro­nomic performance of fasciated soybean genotypes and their isogenic lines. Crop Sci. 33 : 427-432 https://doi.org/10.2135/cropsci1993.0011183X003300030002x
  14. Saghai, M. A., A. K. M. Soliman, R. A. Jorgensen, and R. W. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley : Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. 81 : 8014-8018
  15. Shoemaker, R. C., and J. E. Specht. 1995. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci. 35 : 436-446 https://doi.org/10.2135/cropsci1995.0011183X003500020027x
  16. White, O. E. 1948. Fasciation. Bot. Rev. 14 : 319-358 https://doi.org/10.1007/BF02861723