DOI QR코드

DOI QR Code

Study on the Thrust Generation of a Flat Plate in Heave Oscillation Using a Lattice-Boltzmann Method

격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구

  • 안상준 (한양대학교 대학원 기계공학과) ;
  • 김용대 (한양대학교 대학원 기계공학과) ;
  • 맹주성 (한양대학교 기계공학부) ;
  • 이종신 (수원과학대학 자동차과) ;
  • 한철희 (충주대학교 항공.기계설계학과)
  • Published : 2007.05.31

Abstract

Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.

자연에 존재하는 곤충과 새들은 날개짓을 통하여 이동에 필요한 유체력을 발생시킨다. 실현 가능한 플랩핑 MAV를 개발하기 위해서는 날개짓과 추력발생사이의 관계에 관한 기초연구가 필요하다. 본 연구에서는 격자볼츠만법을 사용하여 히빙진동 운동을 하는 평판날개에서 추력 발생이 시작되는 조건을 파악하고자 하였다. 히빙진폭을 0.5C로 고정시키고 환원주파수가 추력발생에 미치는 영향을 파악하였다. 다양한 경우의 히빙진폭에 대하여 환원주파수와 추력 사이의 관계를 파악하고, 추력발생에 더 중요한 파라메터가 Strouhal수임을 보였다. Reynolds수 변화에 따른 추력특성을 파악하였다. 본 연구결과 추력발생이 시작되는 임계 Strouhal 수는 약 0.12이며 추력은 Strouhal 수에 대하여 지수함수의 관계를 갖는다.

Keywords

References

  1. Lighthill, M. J., 'Aquatic Animal Propulsion of High Hydromechanical Efficiency', Journal of Fluid Mechanics, Vol. 44, 1970, pp. 265-301 https://doi.org/10.1017/S0022112070001830
  2. Phlips, P. J., East, R. A., and Pratt, N. H., 'An Unsteady Lifting Line Theory of Flapping Wings with Application to the Forward Flight of Birds', Journal of Fluid Mechanics, Vol. 112, 1981, pp. 97-125 https://doi.org/10.1017/S0022112081000311
  3. Rozhdestvensky, K. V. and Ryzhov, V. A., 2003, 'Aerohydrodynamics of Flapping-Wing Propulsors', Progress in Aerospace Sciences, Vol. 39, 2003, pp. 585-633 https://doi.org/10.1016/S0376-0421(03)00077-0
  4. Ho, 5., Nassef, H., Pornsinsirirak, N., Tai, Y-C., and Ho, C-M., ' Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers', Progress in Aerospace Sciences, Vol. 39, 2003, pp. 635-681 https://doi.org/10.1016/j.paerosci.2003.04.001
  5. Wang, Z. H., 'Dissecting Insect Flight', Annual Review of Fluid Mechanics, Vol. 37, 2005, pp. 183-210 https://doi.org/10.1146/annurev.fluid.36.050802.121940
  6. Jones, K. D., Dohring, C. M., and Plazer, M. F., 'Experimental and Computational Investigation of the Knoller-Betz Effect', AIAA Journal, Vol. 32, No.7, 1998, pp. 1240-1246
  7. Lai, J. C. S. and Platzer, M. F., 'Jet Characteristics of a Plunging Airfoil', AIAA Journal, Vol. 37, No. 12, 1999, pp. 1529-1537 https://doi.org/10.2514/2.641
  8. 이정상, 김진호, 김종암, '곤충비행에서 갑작스런 추력발생의 공기역학적 원인, Part 1: 와류 정지 및 와류 짝 현상', 한국항공우주학회지, 제35권 제1호, 2007, pp. 1-9 https://doi.org/10.5139/JKSAS.2007.35.1.001
  9. 이정상, 김진호, 김종암, '곤충비행에서 갑작스런 추력발생의 공기역학적 원인, Part 2: 공기역학적 주요 변수에 대한 연구', 한국항공우주학회지, 제 35권 제 1호, 2007, pp. 10-17 https://doi.org/10.5139/JKSAS.2007.35.1.010
  10. Childress, S' and Dudley, R, 'Transition from Ciliary to Flapping Mode in a Swimming Mollusc: Flapping Flight as a Bifurcation in', Journal of Fluid Mechanics, Vol. 498, 2004, pp, 257-288 https://doi.org/10.1017/S002211200300689X
  11. Koelman, J. M. V. A, 'A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow', Eruophys. Lett., Vol. 15, No. 6, 1991, pp. 603-607 https://doi.org/10.1209/0295-5075/15/6/007
  12. Qian, Y. H., D.d'Humieres, and P. Lallemand, 'Lattice BGK Models for Navier-Stokes Equation', Europhys. Lett., Vol. 17, No.6, pp. 479-484
  13. Chapman, S., 'On the Law of Distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non -uniform Simple Monatomic Gas', Philosophical Transactions of Royal Society of London, Vol. A216, 1916, pp. 279-348
  14. Lallemand, P., and Luo, L., 'Lattice Boltzmann Method for Moving Boundaries', Journal of Computational Physics, Vol. 184, 2003, pp. 406-421 https://doi.org/10.1016/S0021-9991(02)00022-0
  15. Wang, Z. J., 'Vortex Shedding and Frequency Selection in Flapping Flight', Journal of Fluid Mechanics, Vol. 410, 2000, pp. 323-341 https://doi.org/10.1017/S0022112099008071
  16. Yu, D., Mei, R., Luo, L-S., and Shyy, W., 'Viscous Flow Computations with the Method of Lattice Boltzmann Equation', Progress in Aerospace Sciences, Vol. 39, 2003, pp. 329-367 https://doi.org/10.1016/S0376-0421(03)00003-4
  17. Mei, R, Yu, D., and Shyy, W., 'Force Evaluation in the Lattice Boltzmann MethodInvolving Curved Geometry', Physical Review E, Vol. 65, No. 041203, 2004, pp. 1-14
  18. Resenfeld, M. and Kwak, D., 'A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems', Journal of Computational Physics, Vol. 94, 1991, pp. 102-137 https://doi.org/10.1016/0021-9991(91)90139-C
  19. Braza, M. and Chassaing, P., 'Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder', Journal of Fluid Mechanics, Vol. 165, 1986, pp. 79-130 https://doi.org/10.1017/S0022112086003014
  20. Liu, C., Zheng, X., and Sung, C.H., 'Preconditional Multigrid Methods for Unsteady Incompressible Flows', Journal of Computational Physics, Vol. 139, 1998, pp. 35-57 https://doi.org/10.1006/jcph.1997.5859